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We present a probabilistic model of how viewers may use defocus blur in conjunction with other pictorial cues to estimate the absolute distances to objects
in a scene. Our model explains how the pattern of blur in an image together with relative depth cues indicates the apparent scale of the image’s contents.
From the model, we develop a semi-automated algorithm that applies blur to a sharply rendered image and thereby changes the apparent distance and scale
of the scene’s contents. To examine the correspondence between the model/algorithm and actual viewer experience, we conducted an experiment with human
viewers and compared their estimates of absolute distance to the model’s predictions. We did this for images with geometrically correct blur due to defocus
and for images with commonly used approximations to the correct blur. The agreement between the experimental data and model predictions was excellent.
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1. INTRODUCTION
The pattern of blur in an image can strongly influence the perceived
scale of the captured scene. For example, cinematographers work-
ing with miniature models can make scenes appear life size by us-
ing a small camera aperture, which reduces the blur variation be-
tween objects at different distances [Fielding 1985]. The opposite
effect is created in a photographic manipulation known as the tilt-
shift effect: A full-size scene is made to look smaller by adding blur
with either a special lens or post-processing software tools [Laforet
2007; Flickr 2009; Vishwanath 2008].

Figures 1 and 2 demonstrate the miniaturization effect. In Fig-
ure 2, the image in the upper left has been rendered sharply and to
typical viewers looks like a life-size scene in San Francisco. The
upper-right image has been rendered with a blur pattern consistent
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with a shorter focal distance, and it looks like a miniature-scale
model. The two images in the lower row demonstrate how the ap-
plication of a linear blur gradient can have a similar effect.

Clearly, blur plays a significant role for conveying a desired
sense of size and distance. However, the way the visual system uses
blur to estimate perceived scale is not well understood. Okatani and
Deguchi [2007] have shown that additional information, such as
perspective, is needed to recover scene scale. But a more detailed,
perceptually based model will provide further insight into the ef-
fective application of blur. This paper presents a general proba-
bilistic model of distance estimation from blur. From the model,
we develop an algorithm for manipulating blur in images to pro-
duce the desired apparent scale. We then validate the model and al-
gorithm with a psychophysical study. Finally, we explore potential
applications.
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Fig. 1. (a) Rendering a cityscape with a pinhole aperture results in no
perceptible blur. The scene looks large and far away. (b) Simulating a 60m-
wide aperture produces blur consistent with a shallow depth of field, making
the scene appear to be a miniature model.
Original city images and data from GoogleEarth are copyright Terrametrics, SanBorn,
and Google.

2. BACKGROUND
2.1 Defocus Blur in Computer Graphics and

Photography
The importance of generating proper depth-of-field effects in syn-
thetic or processed imagery is well established. Special-effects
practitioners often manipulate the depth of field in images to convey
a desired scale [Fielding 1985]. For example, it is commonplace in
cinematography to record images with small apertures to increase
the depth of field. Small apertures reduce the amount of defocus
blur and this sharpening causes small-scale scenes to look larger.
Images created with proper defocus are also generally perceived as
more realistic and more aesthetic [Hillaire et al. 2007; Hillaire et al.
2008].

Blur can also be used to direct viewers’ attention to particular
parts of an image. For example, photographers and cinematogra-
phers direct viewer gaze toward a particular object by rendering
that object sharp and the rest of the scene blurred [Kingslake 1992;
Fielding 1985]. Eye fixations and attention are in fact drawn to
regions with greater contrast and detail [Kosara et al. 2002; Cole
et al. 2006; DiPaola et al. 2009]. These applications of blur may
help guide users toward certain parts of an image, but our analysis
suggests that the blur manipulations could also have the undesired
consequence of altering perceived scale. This suggestion is consis-
tent with another common cinematic practice where shallow depth
of field is used to draw a viewer into a scene and create a feeling of
intimacy between the film subjects and viewer. A shallower depth
of field implies a smaller distance between the viewer and subjects
which creates the impression that the viewer must be standing near
the subjects.

As depth-of-field effects are used more frequently, it is impor-
tant to understand how to generate them accurately and efficiently.
Some of the earliest work on computer-generated imagery ad-
dressed the problem of correctly rendering images with defocus
blur. Potmesil and Chakravarty [1981] presented a detailed descrip-
tion of depth-of-field effects, the lens geometry responsible for their
creation, and how these factors impact rendering algorithms. The
seminal work on distribution ray tracing by Cook and colleagues
[Cook et al. 1984] discussed defocus and presented a practical
method for rendering images with finite apertures. Likewise, the
original REYES rendering architecture was built to accommodate a
finite aperture [Cook et al. 1987]. Development of the accumulation
buffer was motivated in part by the need to use hardware rendering
methods to generate depth-of-field effects efficiently [Haeberli and
Akeley 1990]. Kolb et al. [1995] described a method for rendering
blur effects that are specific to a real lens assembly as opposed to
an ideal thin lens. Similarly, Barsky [2004] investigated rendering
blurred images using data measured from a specific human eye.

Even with hardware acceleration, depth-of-field effects remain
relatively expensive to render. Many methods for accelerating or
approximating blur due to defocus have been developed [Fearing
1995; Rokita 1996; Barsky et al. 2003a; 2003b; Mulder and van
Liere 2000], and the problem of rendering such effects remains an
active area of research.

Researchers in computer vision and graphics have also made use
of the relationship between depth and blur radius for estimating the
relative distances of objects in photographs. For example, Pentland
[1987] showed that blur from defocus can be used to recover an
accurate depth map of an imaged scene when particular parameters
of the imaging device are known. More recently, Green and col-
leagues [Green et al. 2007] used multiple photographs taken with
different aperture settings to compute depth maps from differences
in estimated blur. Others have created depth maps of scenes using
specially constructed camera apertures [Levin et al. 2007; Green
et al. 2007; Moreno-Noguer et al. 2007].

2.2 Aperture and Blur
When struck by parallel rays, an ideal thin lens focuses the rays
to a point on the opposite side of the lens. The distance between
the lens and this point is the focal length, f . Light rays emanat-
ing from a point at some other distance z1 in front of the lens will
be focused to another point on the opposite side of the lens at dis-
tance s1. The relationship between these distances is given by the
thin-lens equation:

1

s1
+

1

z1
=

1

f
. (1)
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Fig. 2. Upper two images: Another example of how rendering an image with a shallow depth of field can make a downtown cityscape appear to be a
miniature-scale model. The left image was rendered with a pinhole camera, the right with a 60m aperture. Lower two images: Applying a blur gradient that
approximates a shallow depth of field can also induce the miniaturization effect. The effects are most convincing when the images are large and viewed from
a short distance.
Original city images and data from GoogleEarth are copyright Terrametrics, SanBorn, and Google. Original lake photograph is copyright Casey Held.
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Fig. 3. Schematic of blur in a simple imaging system. z0 is the focal dis-
tance of the device given the lens focal length, f , and the distance from the
lens to the image plane, s0. An object at distance z1 creates a blur circle
of diameter c1, given the device aperture, A. Objects within the focal plane
will be imaged in sharp focus. Objects off the focal plane will be blurred
proportional to their dioptric (m�1) distance from the focal plane.

In a typical imaging device, the lens is parallel to the image plane
containing the film or CCD array. If the image plane is at distance
s0 behind the lens, then light emanating from features at distance
z0 = 1/(1/f � 1/s0) along the optical axis will be focused on
that plane (Figure 3). The plane at distance z0 is the focal plane,
so z0 is the focal distance of the device. Objects at other distances
will be out of focus, and hence will generate blurred images on the
image plane. We can express the amount of blur by the diameter
c of the blur circle in the image plane. For an object at distance
z1, c1 = |A(s0/z0)(1 � z0/z1)|, where A is the diameter of the
aperture. It is convenient to substitute d for the relative distance
z1/z0, yielding:

c1 =

˛̨
˛̨As0

z0

„
1� 1

d

«˛̨
˛̨ (2)

The depth of field is the width of the region centered around the fo-
cal plane where the blur circle radius is below the sharpness thresh-
old, or the smallest amount of perceptible blur. Real imaging de-
vices, like the human eye, have imperfect optics and more than
one refracting element, so Eqs. (1) and (2) are not strictly correct.
Later we describe those effects and show that they do not affect
our analysis significantly. An important aspect of Eq. (2) is the in-
verse relationship between z0 and c1. This relationship means that
the blur at a given relative distance d increases as z0 decreases.
In other words, the depth of field becomes narrower with closer
focal distances. For this reason, a small scene imaged from close
range generates greater blur than a scaled-up version of the same
scene imaged from farther away. As explained in Section 4, it
is this relationship that produces the perceived miniaturization in
Figure 2.

3. ADJUSTING BLUR TO MODULATE PERCEIVED
DISTANCE AND SIZE

3.1 Tilt-and-shift Lenses and Linear Blur Gradients
So far we have assumed that the imaging and lens planes are par-
allel, but useful photographic effects can be generated by slant-
ing the two planes with respect to each other. Some cameras do
so with a “tilt-and-shift” lens mount that allows the position and
orientation of the lens to be changed relative to the rest of the
camera [Kingslake 1992]; other cameras achieve an equivalent ef-
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z

Fig. 4. The Scheimpflug Principle. Tilt-and-shift lenses cause the orienta-
tion of the focal plane to shift and rotate relative to the image plane. As a
result, the apparent depth of field in an image can be drastically changed
and the photographer has greater control over which objects are in focus
and which are blurred.

fect by adjusting the orientation of the filmback. Rotation of the
lens relative to the image plane affects the orientation of the focal
plane relative to the optical axis (Figure 4). In such cases, the im-
age and lens planes intersect along the so-called Scheimpflug line.
The focal plane also intersects those planes at the Scheimpflug line
[Kingslake 1992; Okatani and Deguchi 2007]. Because the focal
plane is not perpendicular to the optical axis, objects equidistant
from the lens will not be blurred equally. One can take advantage
of this phenomenon by tilting the lens so that an arbitrary plane in
the scene is in clear focus. For example, by making the focal plane
coplanar with a tabletop, one can create a photograph in which all
of the items on the table are in clear focus. The opposite effect is
created by tilting the lens in the opposite direction, so that only
a narrow band of the tabletop is in focus. The latter technique ap-
proximates a smaller depth of field. The pattern of blur in the image
is close to that produced by a slanted object plane photographed
with a conventional camera at short range [Okatani and Deguchi
2007]. McCloskey and colleagues [2009] showed that the pattern
of blur produced by a slanted plane is a linear gradient, with the
blur and distance gradients running in the same direction. There-
fore, it stands to reason that a tilt-and-shift image could be sim-
ilar to a sharply rendered image treated with a linear blur gradi-
ent. Indeed, most of the tilt-and-shift examples popular today, as
well as Figure 2(d), were created this way [Flickr 2009]. However,
there can be large differences in the blur patterns produced by each
method, and it would be useful to know whether those differences
have any impact on the perception of the image.

3.2 Comparing Blur Patterns
As previously discussed, it is often useful to make the scene de-
picted in an image appear bigger or smaller than it actually is.
Special-effects practitioners can make a scene look bigger by
recording with a small aperture or make the scene look smaller by
recording with a large aperture [Fielding 1985]. Consider recording
a small scene located z0 meters away from the camera and trying
to make it appear to be m times larger and located ẑ0 = mz0 me-
ters away from the camera. Assume that with a camera aperture
diameter of A, the apparent size matches the actual size. Then, re-
ferring to the equations we developed in Section 2.2, the amount
of blur we want to have associated with a given relative distance d
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Consistent blur Simulated tilt & shift lens Linear blur gradient
Blur-rendering Techniques:

Comparison of Blur-circle Diameters:
T&S lens vs. consistent blur Linear blur gradient vs. consistent blur Linear blur gradient vs. T&S lens

% Difference (blur-circle diameter):
−1000 −100 −10 0 100010010
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Fig. 5. Comparison of blur patterns produced by three rendering techniques: consistent blur (a), simulated tilt-and-shift lens (b), and linear blur gradient (c).
The settings in (b) and (c) were chosen to equate the maximum blur-circle diameters with those in (a). The percent differences in blur-circle diameters between
the images are plotted in (d), (e), and (f). Panels (d) and (e) show that the simulated tilt-and-shift lens and linear blur gradient do not closely approximate
consistent blur rendering. The large differences are due to the buildings, which protrude from the ground plane. Panel (f) shows that the linear blur gradient
provides essentially the same blur pattern as a simulated tilt-and-shift lens. Most of the differences in (f) are less than 7%; the only exceptions are in the band
near the center, where the blur diameters are less than one pixel and not detectable in the final images.

is given by:

ĉ1 =

˛̨
˛̨As0

ẑ0

„
1� 1

d
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=
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«˛̨
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Here we see that we can achieve the same amount of blur as en-
countered with a focal distance of ẑ0 = mz0 by shooting the scene
at distance z0 and setting the diameter of the camera aperture to
Â = A/m. The aperture must therefore be quite small to make
a scene look much larger than it is and this limits the amount of
available light, causing problems with signal-to-noise ratio, motion,
and so forth. Likewise the aperture must be quite large to make the
scene look much smaller than it actually is, and such large aper-
tures might be difficult to achieve with a physical camera. Because
of these limitations, it is quite attractive to be able to use a con-

ventional camera with an aperture of convenient size and then to
manipulate blur in post-processing, possibly with blur gradients.

We quantified the differences in three types of blur — consis-
tent, linear gradient, and tilt-shift — by applying them to 14 full-
scale scenes of San Francisco taken from GoogleEarth (Figure 5(a)
shows an example). In each image, we wanted to produce large
variations in blur, as if viewed by the human eye (aperture ⇡
4.6mm) with a focal distance z0 of only 0.06m to the center of the
scene. Because the actual focal distance was 785m, being consis-
tent with a human eye at 0.06m meant that a virtual camera with
a very large aperture of 60.0m was necessary. To produce each
consistent-blur image, we captured many images of the same lo-
cale from positions on a jittered grid covering a circular aperture.
We translated each image to ensure that objects in the center of
the scene, which were meant to be in focus, were aligned from
one image to another. We then averaged those images to produce
the final image. This approach is commonly used with hardware
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scan-conversion renderers to generate images with accurate depth-
of-field effects [Haeberli and Akeley 1990]. The tilt-and-shift im-
ages were generated in a similar fashion, but with the simulated
image plane slanted relative to the camera aperture. The slant an-
gles were chosen to produce the same maximum blur magnitudes
as the consistent-blur images (slant = -16.6� in Figure 5(b)). The
direction of the slant (the tilt) was aligned with the distance gradi-
ent in the scenes. The distance gradient was always vertical, so the
aligned blur gradient was also vertical. The maximum magnitudes
of the gradients were set to the average blur magnitudes along the
top and bottom of the consistent-blur images (Figure 5(c)). Thus,
the histograms of blur magnitude were roughly equal across the
three types of blur manipulation. For the linear blur gradients, blur
was applied to the pixels by convolving them with cylindrical box
kernels. A vertical blur gradient is such that all of the pixels in a
given row are convolved with the same blur kernel.

We calculated the differences between the blur diameters pro-
duced by each rendering technique. The blur patterns in the tilt-
and-shift-lens and linear-blur-gradient images were similar to each
other (generally never differing by more than 7%; Figure 5(f)), but
differed greatly from the pattern in the consistent-blur condition
(Figure 5(c)(d)). The differences relative to consistent blur result
from the buildings that protrude from the ground plane. In Sec-
tion 6, we explore whether the differences affect perceived distance.
This analysis was performed on all of our example images and we
found that linear blur gradients do in fact yield close approxima-
tions of tilt-and-shift blur, provided that the scenes are roughly pla-
nar. This is why tilt-and-shift images and their linear-blur-gradient
approximations have similarly compelling miniaturization effects.

Our next question is, why does blur affect the visual system’s es-
timates of distance and size? To answer this, we developed a prob-
abilistic model of the distance information contained in image blur.

4. MODEL: BLUR AS AN ABSOLUTE DEPTH CUE
4.1 Vision Science Literature
The human eye, like other imaging systems, has a limited depth of
field, so it encounters blur regularly. Blur depends partly on the dis-
tance to an object relative to where the eye is focused, so it stands to
reason that it might be a useful perceptual cue to depth. The vision
science literature is decidedly mixed on this issue. Some investiga-
tors have reported clear contributions of blur to depth perception
[Pentland 1987; Watt et al. 2005], but others have found either no
effect [Mather and Smith 2000] or qualitative effects on perceived
depth ordering, but no more [Marshall et al. 1996; Mather 1996;
Palmer and Brooks 2008]. This conflicts with the clear perceptual
effects associated with the blur manipulation in Figure 2. A better
understanding of the distance information contained in blur should
yield more insight into the conditions in which it is an effective
depth cue.

4.2 Probabilistic Inference of Distance from Blur
The physical relationship between camera optics and image blur
can help us understand the visual system’s use of retinal-image
blur. For instance, if an object is blurred, is it possible to recover its
distance from the viewer? To answer this, we return to Eq. (2). Re-
gardless of whether a photograph or a real scene is being viewed,
we assume that the visual system interprets the retinal image as
being produced by the optics of the eye. Now the aperture, A, is
the diameter of a human pupil, z0 is the distance to which the eye
is focused, and d is the relative distance to the point in question.
Figure 6 shows the probability of z0 and d for a given amount of
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Fig. 6. Focal distance as a function of relative distance and retinal-image
blur. Relative distance is defined as the ratio of the distance to an object and
the distance to the focal plane. The three colored curves represent different
amounts of image blur expressed as the diameter of the blur circle, c, in
degrees. We use angular units because in those units, the image device’s fo-
cal length drops out [Kingslake 1992]. The variance in the distribution was
determined by assuming that pupil diameter is Gaussian distributed with a
mean of 4.6mm and standard deviation of 1mm [Spring and Stiles 1948].
For a given amount of blur, it is impossible to recover the original focal
distance without knowing the relative distance. Note that as the relative dis-
tance approaches 1, the object moves closer to the focal plane. There is
a singularity at a relative distance of 1 because the object is by definition
completely in focus at that distance.

blur, assuming A is 4.6mm ± 1mm [Spring and Stiles 1948]. For
each blur magnitude, infinite combinations of z0 and d are possible.
The distributions for large and small blur differ: large blur diame-
ters are consistent with a range of short focal distances, and small
diameters are consistent with a range of long distances. Nonethe-
less, one cannot estimate focal distance or relative distance from
a given blur observation. How then does the change in perceived
distance and size in Figure 2 occur?

The images in Figure 2 contain other depth cues (i.e., linear per-
spective, relative size, texture gradient, etc.) that specify the relative
distances among objects in the scene. Such cues are scale ambigu-
ous, with the possible exception of familiar size (see Section 3.3.2),
so they cannot directly signal the absolute distances to objects. We
can, however, determine absolute distance from the combination
of blur and those other cues. To do this, we employ Bayes’ Law,
which prescribes how to compute the statistically optimal (i.e., low-
est variance) estimate of depth from uncertain information. In the
current case of estimating distance from blur and other cues, esti-
mates should be based on the posterior distribution:

P (z0, d|c, p) =
P (c|zo, d)P (p|z0, d)P (z0, d)

P (c, p)
(4)

where c and p represent the observed blur and perspective, respec-
tively. In this context, perspective refers to all pictorial cues that
result from perspective projection, including the texture gradient,
linear perspective, and relative size. Using a technique in Burge
et al. [2010], we convert the likelihood distributions and prior on
the right side of the equation into posterior distributions for the in-
dividual cues and then take the product for the optimal estimate.

Figure 7 shows the result. The left panel illustrates the relation-
ship between focal distance and relative distance for a given amount
of blur in the retinal image, P (zo, d|c). The middle panel shows
the relationship between distance and perspective cues: P (zo, d|p).
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Fig. 7. Bayesian analysis of blur as cue to absolute distance. (a) The probability distribution P (zo, d|c) where c is the observed blur diameter in the image
(in this case, 0.1�), z0 is the focal distance, and d is the relative distance of another point in the scene. Measuring the blur produced by an object cannot reveal
the absolute or relative distance to points in the scene. (b) The probability distribution P (zo, d|p) where p is the observed perspective. Perspective specifies
the relative distance, but not the absolute distance: it is scale ambiguous. (c) The product of the distributions in (a) and (b). From this posterior distribution, the
absolute and relative distances of points in the scene can be estimated.

For two objects in the scene—one at the focal distance and one at
another distance—one can estimate the ratio of distances to the ob-
jects from perspective. For instance, perspective cues may reveal
the slant and tilt of the ground plane, and then the position of the
objects along that plane would reveal their relative distances from
the observer [Sedgwick 1986]. The variance of P (zo, d|p) depends
on the reliability of the available perspective cues: lower variance
when the cues are highly reliable. The right panel shows the com-
bined distribution derived from the products of the distributions in
the left and middle panels. By combining information in blur and
perspective, the model can now estimate absolute distance. We use
the median of the product distribution as the depth estimate.

In summary, blur by itself provides little information about rel-
ative or absolute distance, and perspective cues by themselves pro-
vide little information about absolute distance. But the two cues in
combination provide useful information about both distances. This
constitutes our model of how blur is used in images like Figure 2
to provide an impression of absolute distance.

4.2.1 Impact on Previous Findings. As we said earlier, vision
scientists have generally concluded that blur is a weak depth cue.
Three reasons have been offered for its ineffectiveness. It is useful
to evaluate them in the context of the model.

(1) Blur does not indicate the sign of a distance change: that is,
it does not by itself specify whether an out-of-focus object
is nearer or farther than an in-focus object. It is evident in
Figure 6 and Eq. (2) that a given amount of blur can be caused
by an object at a distance shorter or longer than the distance
of the focal plane. The model in Figure 7 makes clear how the
sign ambiguity can be solved. The perspective distribution is
consistent with only one wing of the blur distribution, so the
ambiguity is resolved by combining information from the two
cues.

(2) The relationship between distance and blur is dependent on
pupil size. When the viewer’s pupil is small, a given amount
of blur specifies a large change in distance; when the pupil is
large, the same blur specifies a smaller change. There is no ev-
idence that humans can measure their own pupil diameter, so
the relationship between measured blur and specified distance
is uncertain. The model shows that distance can still in prin-
ciple be estimated even with uncertainty about pupil size. The
uncertainty only reduces the precision of depth estimation.

(3) The visual system’s ability to measure changes in retinal-image
blur is limited, so small changes in blur may go undetected
[Mather and Smith 2002]. Blur discrimination is not well char-
acterized, so we have not yet built corresponding uncertainty
into the model. Doing so would yield higher variance in the
blur distributions in Figure 6 and the left panel of Figure 7,
much like the effect of uncertainty due to pupil diameter.

Thus, the model shows how one can in principle estimate dis-
tance from blur despite uncertainties due to sign ambiguity, pupil
diameter, and blur discrimination. Furthermore, this estimation
does not require that the focal distance be known beforehand, that
more than one image recorded with different focal distances be
available, or that the camera have a specially designed aperture.

4.2.2 Perspective Cues. The model depends on the reliability
of the relative-distance information provided by perspective. In an
image like the urban scene in Figure 1, linear perspective speci-
fies relative distance quite reliably, so the variance of P (zo, d|p)
is small. As a consequence, the product distribution has low vari-
ance: i.e., the estimates of absolute and relative distance are quite
precise. In an image of an uncarpentered scene with objects of un-
known size and shape, perspective and other pictorial cues would
not specify relative distance reliably, and the variance of P (zo, d|p)
would be large. In this case, the product distribution would also
have high variance and the distance estimates would be rather im-
precise. Thus, the ability to estimate depth from blur is quite depen-
dent on the ability to estimate relative distance from perspective or
other pictorial cues. We predict, therefore, that altering perceived
size by manipulating blur will be more effective in scenes that con-
tain rich perspective cues than it will be in scenes with weak per-
spective cues.

We have also assumed that perspective cues convey only relative-
distance information. In fact, many images also contain the cue of
familiar size, which conveys some absolute-distance information.
We could incorporate this into the model by making the perspective
distribution in Figure 7(b) two-dimensional with different variances
horizontally and vertically. We chose not to add this feature to sim-
plify the presentation and because we have little idea of what the
relative horizontal and vertical variances would be. It is interesting
to note, however, that familiar size may cause the pattern of blur
to be less effective in driving perceived scale. Examples include
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photos with real people, although even those images can appear to
be miniaturized if sufficient blur is applied appropriately.

4.2.3 Recovering Focal Distance in Practice. The model can
be implemented to estimate the focal distance z0 used to create a
given image. First, the blur circle c1 and relative distance d are
estimated at several locations in the image. Then, assuming some
values for parameters A and s0, Eq. (2) can be used to calculate z0.
Compiling the z0 estimates from all the example points provides a
marginal distribution of estimates of the focal distance (Figure 9).
The median of the marginal distribution may then be interpreted as
the final estimate of z0, with the variance of that distribution indi-
cating the estimate’s reliability. If the blur and depth information
are either difficult to measure or not properly matched, the reliabil-
ity will be low, and the blur in the image will have less impact on
the visual system’s estimate of the distance and size of the scene.

5. ESTIMATING DISTANCE IN IMAGES WITH
MANIPULATED BLUR

Our model predicts that the visual system estimates absolute
distance by finding the focal distance that is most consistent
with the blur and perspective in a given image. If the blur and
perspective are consistent with one another, accurate and precise
distance estimates can be obtained. We explored this notion by
applying the procedure from Section 4.2.3 to images with three
types of blur: (1) blur that is completely consistent with the
relative distances in a scene (consistent-blur condition), (2) blur
that is mostly correlated with the distances (vertical-blur-gradient
condition), and (3) blur that is uncorrelated with the distances
(horizontal-blur-gradient condition).

Fourteen scenes from GoogleEarth were used. Seven had a
large amount of depth variation (skyscrapers) and seven had lit-
tle depth variation (one- to three-story buildings). The camera was
placed 500m above the ground and oriented down 35� from earth-
horizontal. The average distance from the camera to the buildings
in the centers of each scene was 785m.

5.1 Applying Blur Patterns
The consistent-blur rendering technique described in Section 3.2
was used. The diameters of the simulated camera apertures were
60.0, 38.3, 24.5, 15.6, and 10.0m. The unusually large apertures
were needed to produce blur consistent with what a human eye with
a 4.6mm pupil would receive when focused at 0.06, 0.09, 0.15, 0.23,
and 0.36m, respectively. Figures 8(b) and (c) show example images
with simulated 24.5m and 60m apertures. The vertical blur gradient
was, as stated, aligned with the distance gradient. It was generated
using the technique described in Section 3.2. Figures 8(d) and 8(e)
are examples. The horizontal blur gradients employed the same blur
magnitudes as the vertical gradients, but were orthogonal to the
distance gradients. Figures 8(f) and 8(g) are examples.

5.2 Calculating Best Fits to the Image Data
To predict the viewers’ response to each type of blur, we applied
the procedure in Section 4.2.3 to each image:

(1) We selected pixels in image regions where blur would be most
measurable, namely areas containing high contrast, by em-
ploying the Canny edge detector [Canny 1986]. The detector’s
parameters were set such that it found the subjectively most
salient edges. We later verified that the choice of parameters
did not affect the model’s predictions.

(2) Recovering relative distance and blur information:

(a) Relative distances in the scene were recovered from the
video card’s z-buffer while running GoogleEarth. These
recovered distances constitute the depth map. In our per-
ceptual model, these values would be estimated using
perspective information. The z-buffer, of course, yields
much more accurate values than a human viewer would
obtain through a perspective analysis. However, our pri-
mary purpose was to compare the predictions for the
three blur types. Because the visual system’s ability to
measure relative distance from perspective should affect
each prediction similarly, we chose not to model it at this
point. We can add such a process by employing estab-
lished algorithms [Brillault-O’Mahony 1991; Coughlan
and Yuille 2003].

(b) For the consistent-blur condition, the depth map was used
to calculate the blur applied to each pixel. For the incor-
rect blur conditions, the blur for each pixel was deter-
mined by the applied gradients.

(3) To model human viewers, we assumed A=4.6mm and
s0=17mm. We assumed no uncertainty for s0 because an indi-
vidual viewer’s eye does not vary in length from one viewing
situation to another. We then used Eq. (2) to calculate z0 for
each pixel.

(4) All of the estimates were combined to produce a marginal dis-
tribution of estimated focal distances. The median of the re-
sulting distribution was the final estimate.

The results for the example images in Figures 8(c), 8(e), and 8(g)
are shown in Figure 9. The other images produced quantitatively
similar results.

5.3 Predictions of the Model
First consider the images with consistent blur. Figure 9(a) shows
the focal-distance estimates based on the blur and relative-distance
data from the image in Figure 8(c). Because the blur was rendered
correctly for the relative distances, all of the estimates indicate the
intended focal distance of 0.06m. Therefore, the marginal distri-
bution of estimates has very low variance and the final estimate is
accurate and precise.

Next consider the images with an imposed vertical blur gradient.
Figure 9(b) plots the blur/relative-distance data from the vertical-
blur image in Figure 8(e). The focal-distance estimates now vary
widely, though the majority lie close to the intended value of 0.06m.
This is reflected in the marginal distribution to the right, where the
median is close to the intended focal distance, but the variance is
greater than in the consistent-blur case. We conclude that vertical
blur gradients should influence estimates of focal distance, but in
a less compelling and consistent fashion than consistent blur does.
Although it is not shown here, scenes with larger depth variation
produced marginal distributions with higher variance. This result
makes sense because the vertical blur gradient is a poorer approxi-
mation to consistent blur as the scene becomes less planar.

Now consider the images with the imposed horizontal blur gra-
dient. In these images, the blur is mostly uncorrelated with the rela-
tive distances in the scene, so focal-distance estimates are scattered.
While the median of the marginal distribution is similar to the ones
obtained with consistent blur and the vertical gradient, the variance
of the distribution is much greater. The model predicts, therefore,
that the horizontal gradient will have the least influence on per-
ceived distance.
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Fig. 8. The four types of blur used in the analysis and experiment: (a) no blur, (b-c) consistent blur, (d-e) linear vertical blur gradient, and (f-g) linear
horizontal blur gradient. Simulated focal distances of 0.15m (b,d,f) and 0.06m (c,e,g) are shown. In approximating the blur produced by a short focal length,
the consistent-blur condition produces the most accurate blur, followed by the vertical gradient, the horizontal gradient, and the no-blur condition.
Original city images and data from GoogleEarth are copyright Terrametrics, SanBorn, and Google.

The analysis was also performed on images rendered by simu-
lated tilt-shift lenses. The amount of tilt was chosen to reproduce
the same maximum blur magnitude as the vertical blur gradients.
The marginal distributions for the tilt-shift images were essentially
identical to those for the vertical-blur-gradient images. This finding
is consistent with the observation that linear blur gradients and tilt-
shift lenses produce very similar blur magnitudes (Figure 5) and
presumably similar perceptual effects.

These examples show that the model provides a useful frame-
work for predicting the effectiveness of different types of image
blur in influencing perceived distance and size. The horizontal-
gradient results also highlight the importance of accounting for dis-
tance variations before applying blur.

5.4 Algorithm
Our model predicts that linear blur gradients can have a strong ef-
fect on the perceived distance and size of a scene. But we used care-

fully chosen rendering parameters to produce the blur gradient im-
ages: the maximum blur magnitude was the same as that produced
by a consistent-blur image taken at the intended focal length, and
the tilt of the lens and the orientation of the gradient were perfectly
aligned with the distance gradient in the scene. To simplify the ap-
plication of the model to images, we developed a semi-automated
algorithm that allows the user to load a sharply rendered image,
indicate a desired perceived distance and size, and then apply the
appropriate blur gradient to achieve that outcome.

We implemented the algorithm for scenes that are approximately
planar globally, but it could be extended to scenes that are only lo-
cally planar. The user first sets the desired focal distance z0 and
the viewer’s pupil diameter A. To simulate the human eye, s0 is
set to 0.017m [Larsen 1971]. Next, the slant � and tilt ⌧ of the
planar approximation to the scene are estimated using one of two
methods (slant and tilt are respectively the angle between the line
of sight and surface normal, and the direction of the slant rela-
tive to horizontal). If the scene is carpentered, like the cityscape in

ACM Transactions on Graphics, Vol. 29, No. 2, Article 19, Publication date: March 2010.



19:10 • R. Held et al.

D
istribution of Estim

ated
 Focal D

istances

Relative DistanceA
bs

ol
ut

e 
D

is
ta

nc
e 

(m
)

0.001

0.01

0.1

1.0

10

100

1 20.6

Consistent Blur

1 20.6

Vertical Blur Gradient

1 20.6

Horizontal Blur Gradient
(a) (b) (c)

Fig. 9. Determining the most likely focal distance from blur and perspective. Intended focal distance was 0.06m. Each panel plots estimated focal distance
as a function of relative distance. The left, middle, and right panels show the estimates for consistent blur, vertical blur gradient, and horizontal blur gradient,
respectively. The first step in the analysis is to extract the relative-distance and blur information from several points in the image. The values for each point are
then used with Eq. (2) to estimate the focal distance. Each estimate is represented by a point. Then all of the focal distance estimates are accumulated to form
a marginal distribution of estimates (shown on the right of each panel). The data from a consistent-blur rendering most closely matches the selected curve,
resulting in extremely low variance. Though the vertical blur gradient incorrectly blurs several pixels, it is well correlated with the relative distances in the
scene, so it too produces a marginal distribution with low variance. The blur applied by the horizontal gradient is mostly uncorrelated with relative distance,
resulting in a marginal distribution with large variance and therefore the least reliable estimate.
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Fig. 10. Schematic of variables pertinent to the semi-automated blurring
algorithm. Here, the image surface is equivalent to the monitor surface, and
v and l are in units of pixels. � indicates the angle between the ground
plane’s surface normal and the imaging system’s optical axis. Refer to Al-
gorithm 1 for details on how each value can be calculated from an input
image. (Adapted from Okatani and Deguchi [2007])

Figure 11(a), we use the technique in Algorithm 1, originally de-
scribed by Okatani and DeGuchi [2007]. If the scene is uncarpen-
tered, like the landscape in Figure 11(b), then a grid is displayed
over the image. The viewer uses a mouse to rotate the grid until
it appears to be parallel to the scene. The orientation of the grid
yields � and ⌧ . Parameters l and v (defined in Figure 10) are re-
covered from the settings (in our case, from OpenGL) that were
used to render the grid on-screen. Finally, Algorithm 2 determines
the amount of blur assigned to each pixel, then creates the final
image.

Algorithm 1: Determining � and ⌧ from Parallel Lines
prompt user to select two pairs of lines that are parallel in the
original scene;
p1 = intersection of first line pair;
p2 = intersection of second line pair;
pc = center of image;
vanLine = line connecting p2 and p1;
v = sqrt(|p1y p2y + p1xp2x |);
l = distance between pc and vanLine;
� = ⇡/2 - atan(l/v);
⌧ = angle between vanLine and the image’s horizontal axis;

Algorithm 2: Calculating and Applying Blur to Image
slantAxis = line that passes through pc and is rotated ⌧ degrees
from vertical;

for each pixel in the image do
distance = distance from pixel to pc, projected onto
slantAxis;

✏ = atan(distance/v);

if pixel is closer to observer than pc then
✏ is negative;

else
✏ is positive;

end
relativeDistance = cos(�)*cos(✏)/cos(� + ✏);

blurDiameterInRadians = 2*atan(|A*s0/z0*(1 -
1/relativeDistance )|/2/s0);

blurDiameterInP ixels =
round(2*v*tan(blurDiameterInRadias/2));

end
finalImage = image composed of black pixels;

currentBlurDiameter = 0;

while
currentBlurDiameter  max(blurDiameterInP ixels) do

tempImage = image composed of every pixel with
blurDiameterInP ixels == currentBlurDiameter;

tempImageBlurred = convolve tempImage with
cylindrical blur kernel of diameter currentBlurDiameter;

finalImage = finalImage + tempImageBlurred;

currentBlurDiameter++;

end
return finalImage;
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Fig. 11. Input and output of the semiautomated blurring algorithm. The algorithm can estimate the blur pattern required to simulate a desired focal length. It
can either derive scene information from parallel lines in a scene or use manual feedback from the user on the overall orientation of the scene. (a) Two pairs of
parallel lines were selected from a carpentered scene for use with the first approach. (b) The resulting image once blur was applied. Intended focal distance set
to 0.06m. (c) A grid was manually aligned to lie parallel to the overall scene. (d) The blurred output designed to simulate a focal distance of 0.50m.

Figure 11 shows two example images produced by our algo-
rithm. The scene is carpentered in panel (a), so the parallel-line-
selection option was employed. Panel (b) shows the output of the
algorithm, with an intended focal distance of 0.06m. The scene is
not carpentered in Figure 11(c), so the user aligned a grid to be
parallel to the predominant orientation of the scene. The resulting
blurred image in panel (c) was designed to simulate a focal distance
of 0.50m.

The algorithm provides an effective means for blurring im-
ages in post-processing, thereby changing the perceived distance
and size of a scene. The semi-automated technique frees the user
from the calculations needed to create nearly correct blur, and pro-
duces compelling results for images ranging from urban scenes to
landscapes. Its effectiveness is supported by our model’s predic-
tions, which in turn were validated by the following psychophysical
experiment.

6. PSYCHOPHYSICAL EXPERIMENT
We examined how well the model’s predictions correspond with
human distance percepts. We were interested in learning two
things: (1) Do human impressions of distance accurately reflect the
simulated distance when defocus blur is applied to an image, and

(2) How accurately must defocus blur be rendered to effectively
modulate perceived distance?

6.1 Methods
We used the previously described blur-rendering techniques to gen-
erate stimuli for the perceptual experiment: consistent blur, vertical
blur gradient, and horizontal blur gradient. An additional stimulus
was created by rendering each scene with no blur. The stimuli were
generated from the same 14 GoogleEarth scenes on which we con-
ducted the analysis in Section 4.4.

Each subject was unaware of the experimental hypotheses and
was not an imaging specialist. They were positioned with a chin
rest 45cm from a 53cm CRT and viewed the stimuli monocularly.
Each stimulus was displayed for 3 seconds. Subjects were told to
look around the scene in each image to get an impression of its dis-
tance and size. After each stimulus presentation, subjects entered
an estimate of the distance from a marked building in the center
of the scene to the camera that produced the image. There were
224 unique stimuli, and each stimulus was presented seven times
in random order for a total of 1568 trials. The experiment was con-
ducted in four sessions of about one hour each. At the end, each
subject was debriefed with a series of questions, including how they
formulated their responses and whether the responses were based
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low and high depth variation. The type of blur manipulation is indicated by the colors and shapes of the data points. Blue squares for consistent blur, green
circles for vertical blur gradient, and red triangles for horizontal blur gradient. Error bars represent standard errors. Individual subject data are included in the
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on any particular cues in the images. If the debriefing revealed that
the subject did not fully understand the task or had based his or
her answers on strategies that circumvented the phenomenon being
tested, his or her data were excluded.

6.2 Results
Ten subjects participated, but the data from three were discarded.
Two of the discarded subjects revealed in debriefing that they had
done the task by estimating their height relative to the scene from
the number of floors in the pictured buildings and had converted
that height into a distance. They said that some scenes ”looked
really close,” but described a conversion that scaled the perceived
size up to the size of a real building. The third subject revealed that
she had estimated distance from the amount of blur by assuming
that the camera had a fixed focal distance and therefore anything
that was blurrier had to be farther away.

Figure 12 shows the results averaged across the seven remaining
subjects, with the left and right panels for the low- and high-depth-
variation images, respectively. (Individual subject data are available
in the supplemental material.) The abscissas represent simulated
focal distance (the focal distance used to generate the blur in the
consistent-blur condition); the values for the vertical and horizontal
blur gradients are those that yielded the same maximum blur mag-
nitudes as in the consistent-blur condition. The ordinates represent
the average reported distance to the marked object in the center of
the scene divided by the average reported distance for the no-blur
control condition. Lower values mean that the scene was seen as
closer and therefore presumably smaller.

All subjects exhibited a statistically significant effect of blur
magnitude [3-way, repeated-measures ANOVA, F(5,30) = 13.8,
p<0.00001], reporting that the marked object appeared smaller
when the blur was large. The effect of magnitude was much larger
in the consistent-blur and vertical-blur-gradient conditions than in
the horizontal-gradient condition, so there was a significant effect
of blur type [F(3,18) = 14.7, p<0.00001]. There was a tendency
for the high-depth-variation scenes to be seen as closer, but for blur
magnitude to have a larger effect for the low-depth-variation scenes
[F(1,6) = 2.27, p=0.18 (not significant)].

These results show that perceived distance in human viewers is
influenced by the pattern and magnitude of blur just as the model
predicts. Consistent blur and aligned-linear-gradient blur (which is
used in our semi-automated algorithm) yield systematic and pre-
dictable variations in perceived distance. Linear gradients that are
not aligned with distance information yield a much less systematic
variation in perceived distance.

7. DISCUSSION
7.1 Validity of Assumptions in the Model
Our representation of the depth information conveyed by retinal-
image blur was an approximation to information in the human vi-
sual system. Here we discuss four of our simplifying assumptions.

First, we represented the eye’s optics with an ideal lens free of
aberrations. Image formation by real human eyes is affected by
diffraction due to the pupil, at least for pupil diameters smaller
than 3mm, and is also affected by a host of higher-order aberra-
tions including coma and spherical aberration at larger pupil diame-
ters [Wilson et al. 2002]. Incorporating diffraction and higher-order
aberrations in Figure 7(a) would have yielded greater retinal-image
blur than shown for distances at or very close to the focal distance:
The trough in the blur distribution would have been deeper. The
model estimates absolute distance from image regions with a wide
range of relative distances, not just distances near the focal plane.
Therefore, if the image contains a sufficient range of relative dis-
tances, the estimates are unaffected by the simplifying assumptions
about the eye’s optics.

Second, we assumed that the visual system’s capacity to estimate
depth from blur is limited by the optics of retinal-image formation.
In fact, changes in blur magnitude smaller than 10% are generally
indiscriminable [Mather and Smith 2002]. If we included this ob-
servation, the marginal distributions in Figure 9 would have larger
variance than the ones shown, but the medians (and therefore the
distance estimates) would be little affected.

Third, we assumed that the eye’s optics are fixed. In fact, the
optical power of the eye varies continually due to adjustments of
the shape of the crystalline lens, a process called accommodation.
Accommodation is effected by commands sent to the muscles that
control the shape of the lens. Those commands are a cue to distance,
albeit a variable and weak one [Wallach and Norris 1963; Fisher
and Ciuffreda 1988; Mon-Williams and Tresilian 2000]. In viewing
real scenes, accommodation turns blur into a dynamic cue that may
allow the visual system to glean more distance information than
we have assumed. However, the inclusion of accommodation into
our modeling would have had little effect because the stimuli were
images presented on a flat screen at a fixed distance, so the changes
in the retinal image as the eye accommodates did not mimic the
changes that occur in real scenes. We intend to pursue the use of
dynamic blur and accommodation using volumetric displays that
yield a reasonable approximation to the relationship in real scenes
(e.g., [Akeley et al. 2004]).
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Fourth, our model assumes that the viewer was fixating at the
center of each image, which was rendered sharply. In fact, each ob-
server was instructed to look around the entire image, resulting in
unnatural patterns of blur on the retina. In natural viewing, the ob-
ject of fixation is usually in focus. Inclusion of the incorrect blur
patterns in the model would increase the variance, and in turn de-
crease the reliability, of the distance estimate.

7.2 Algorithm Effectiveness
The predictions of the model and the results of the psychophysi-
cal experiment confirmed the effectiveness of the linear blur gra-
dients applied by our algorithm. Specifically, linear gradients and
consistent blur were similarly effective at modulating perceived
distance and size. Currently, the algorithm is most effective for
planar scenes, and it is only useful for adding blur and mak-
ing sharply focused scenes appear smaller. Further development
could incorporate regional slant estimation to increase its accu-
racy for scenes with large distance variations, and include a sharp-
ening algorithm to reduce blur and make small scenes appear
larger.

7.3 Impact on Computer Graphics
The model we developed explains a number of phenomena in
which blur does or does not affect perceived distance and scale.
Some of these phenomena occur in photography, cinematography,
and graphics, so the model has several useful applications.

7.3.1 Application: Natural Depth of Field. One of the main
points of our analysis is that there is an appropriate relationship
between the depth structure of a scene, the focal distance of the
imaging device, and the observed blur in the image. From this re-
lationship, we can determine what the depth of field would be in
an image that looks natural to the human eye. Consider Eq. (2). By
taking advantage of the small-angle approximation, we can express
blur in angular units:

b1 = 2 tan�1

„
c1

2s0

«
⇡ c1

s0
(5)

where b1 is in radians. Substituting into Eq. (2), we have:

b1 =

˛̨
˛̨ A

z0

„
1� 1

d

«˛̨
˛̨ (6)

which means that the diameter of the blur circle in angular units
depends on the depth structure of the scene and the camera aperture
and not on the camera’s focal length [Kingslake 1992].

Suppose that we want to create a photograph with the same pat-
tern of blur that a human viewer would experience if he or she
was looking at the original scene. We photograph the scene with
a conventional camera and then have the viewer look at the pho-
tograph from its center of projection. The depth structure of the
photographed scene is represented by z0 and d, different d’s for
different parts of the scene. We can recreate the blur pattern the
viewer would experience when viewing the real scene by adjust-
ing the camera’s aperture to the appropriate value. From Eq. (6),
we simply need to set the camera’s aperture to the same diameter
as the viewer’s pupil. If a viewer looks at the resulting photograph
from the center of projection, the pattern of blur on the retina would
be identical to the pattern created by viewing the scene itself. Ad-
ditionally, the perspective information would be correct and con-
sistent with the pattern of blur. This creates what we call ”natural
depth of field.” For typical indoor and outdoor scenes, the average

pupil diameter of the human eye is 4.6mm (standard deviation is
1mm). Thus to create natural depth of field, one should set the cam-
era aperture to 4.6mm, and the viewer should look at the resulting
photograph with the eye at the photograph’s center of projection.
We speculate that the contents of photographs with natural depth
of field will have the correct apparent scale.

7.3.2 Application: Simulating Extreme Scale. We described
how to manipulate blur to make small scenes look large and large
scenes look small. These effects can be achieved by altering the blur
pattern in postprocessing, but they can also be achieved by using
cameras with small or large apertures. Specifically, if the focal dis-
tance in the actual scene is z0, and we want to make it look like ẑ0

where ẑ0 = mz0, Eq. (2) implies that the camera’s aperture should
be set to A/m. In many cases, doing this is not practical because
the required aperture is too restrictive. If the aperture must be quite
small, the amount of light incident on the image plane per unit time
is reduced, and this decreases the signal-to-noise ratio. If the aper-
ture must be very large, it might not be feasible with a physically
realizable camera. Consequently, it is very attractive to be able to
adjust the blur pattern in post-processing in order to produce the
desired apparent scale.

The demonstrations we showed here made large scenes look
small. Figure 8(a) shows an image that was recorded with a fo-
cal length of ⇠800m and a pinhole (A ⇡ 0) aperture. We made the
image look small in panels (b) and (c) by simulating in postpro-
cessing focal lengths of 0.15 and 0.06m. We could have created the
same images by recording the images with cameras whose aper-
ture diameters were 24.5 and 60m, respectively, but this is clearly
not feasible with a conventional camera. It is much more attractive
to achieve the same effects in post-processing, and our algorithm
shows how to do this.

Our analysis also applies to the problem of making small scenes
look large. If we have an image recorded with a particular aper-
ture size, we want to reduce the blur in the image in the fashion
implied by Figure 8. Our algorithm could potentially be used to
determine the desired blur kernel diameter for each region of the
image. However, implementation of this algorithm would require
some form of deconvolution, which is prone to error [Levin et al.
2007].

7.3.3 Application: Using Other Depth Cues to Affect Perceived
Scale. Besides blur, several other cues are known to affect per-
ceived distance and scale. It is likely that using them in conjunction
with blur manipulation would strengthen the effect on perceived
distance and scale.

Atmospheric attenuation causes reductions in image saturation
and contrast across long distances [Fry et al. 1949], and serves as
the motivation for the commonly used rendering method known
as depth cueing. Not surprisingly, more saturated objects tend to
be perceived as nearer than less saturated objects [Egusa 1983]. In
fake miniatures, the saturation of the entire image is often increased
to strengthen the impression that the scene is close to the camera
and small [Flickr 2009]. Conversely, a reduction in saturation helps
create the impression that the scene is far away and therefore large.
It is also not surprising, given the atmospheric effects, that high-
contrast textures are perceived as nearer than low-contrast textures
[Ichihara et al. 2007; Rohaly and Wilson 1999]. We suspect, there-
fore, that adjusting image contrast would also be useful in creating
the desired apparent size.

In principle, the acceleration of an object due to gravity is a
cue to its absolute distance and size [Saxberg 1987; Watson et al.
1992]. When an object rises and falls, the vertical acceleration in
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the world is constant. Thus, distant objects undergoing gravity-fed
motion have slower angular acceleration across the retina than close
objects. Human viewers are quite sensitive to this, but they use a
heuristic in which objects generating greater retinal speed (as op-
posed to acceleration) are judged as nearer than objects generat-
ing slower retinal speeds [Hecht et al. 1996]. This effect has been
used in cinematography for decades: practitioners display video at
slower speed than the recorded speed to create the impression of
large size [Bell 1924; Fielding 1985].

The accommodative state of the viewer’s eye can affect per-
ceived distance [Wallach and Norris 1963; Fisher and Ciuffreda
1988; Mon-Williams and Tresilian 2000]. Thus, if an image is
meant to depict a small scene very close to the eye, the impres-
sion of small size might be more convincing if the image is actually
viewed from up close. Accommodation is, however, a weak cue to
depth, so effects of actual viewing distance may be inconsistent.

7.3.4 Application: Blur and Stereo Displays. Stereo image
and video production has recently gained a great deal of atten-
tion. Several studios are producing films for stereo viewing and
many movie houses have installed the infrastructure for present-
ing these three-dimensional movies [Schiffman 2008]. Addition-
ally, many current-generation televisions are capable of stereo dis-
play [Chinnock 2009]. It is therefore timely to consider blur ren-
dering in stereo content.

Disparity, the cue being manipulated in stereo images, has the
same fundamental geometry as blur [Schechner and Kiryati 2000].
Disparity is created by the differing vantage points of two cam-
eras or eyes, while blur is created by the differing vantage points
of different positions in one camera’s or eye’s aperture. Consider
two pinhole cameras with focal lengths f . The distance from the
camera apertures to the film planes is s0, and the distance between
apertures is I . The cameras are converged on an object at distance
z0 while another object is presented at z1. The images of the ob-
ject at z0 fall in the centers of the two film planes and therefore
have zero disparity. The images of the object at z1 fall at different
locations XL and XR creating a disparity of:

� = XL �XR = I

„
s0

z0

« „
1� 1

d

«
(7)

where d = z1/z0 and 1/s0 = 1/f – 1/z0. The connection to im-
age blur is clear if we replace the aperture A in Eq. (2) with two
pinholes at its edges. Then two images of z1 would be formed and
they would be separated by c1. From Eqs. (2) and (7), for cameras
of focal lengths f ,

c1 = (A/I)|�| (8)

Thus, the magnitudes of blur and disparity caused by a point in
a three-dimensional scene should be proportional to one another.
In human vision, the pupil diameter is roughly 1/12 the distance
between the eyes [Spring and Stiles 1948], so the diameters of blur
circles are generally 1/12 the magnitudes of disparities. Because
the geometries underlying disparity and blur are similar, this basic
relationship holds for the viewing of all real scenes.

How should the designer of stereo images and video adjust blur
and disparity? Because of the similarity in the underlying geome-
tries, the designer should make the disparity and blur patterns com-
patible. To produce the impression of a particular size, the designer
can use the rule of thumb in Eq. (8) to make the patterns of blur
and disparity both consistent with that size. To do otherwise is
to create conflicting information that may adversely affect the in-
tended impression. Two well-known phenomena in stereo images
and video (i.e., the cardboard-cut-out effect [Yamanoue et al. 2000;

Meesters et al. 2004; Masaoka et al. 2006] and puppet-theater ef
fect [Yamanoue 1997; Meesters et al. 2004]) may be caused by
blur-disparity mismatches.

The blur-rendering strategy should depend, however, on how
people are likely to view the stereo image. Consider two cases.
(1) The viewer looks at an object at one simulated distance and
maintains fixation there. (2) The viewer looks around the image,
changing fixation from one simulated distance to another.

In the first case, the designer would render the fixated object
sharply and objects nearer and farther with the blur specified by
Eq. (8). By doing so, the blur and disparity at the viewer’s eyes
are matched, yielding the desired impression of three-dimensional
structure. The blur rendering can guide the viewer’s eye to the in-
tended object [Kosara et al. 2001; DiPaola et al. 2009]. This would
be common for entertainment-based content.

In the second case, the rule of thumb in Eq. (8) should proba-
bly not be applied. In real scenes, the viewer who looks at a nearer
or farther object converges or diverges the eyes to perceive a sin-
gle image and accommodates (i.e., adjusts the eye’s focal power)
to sharpen the retinal image. If the rule of thumb were applied in
creating a stereo image, objects at simulated distances nearer or
farther than the sharply rendered distance would be blurred. The
viewer who looks nearer or farther would again converge or di-
verge the eyes, but the newly fixated object would be blurred on
the retina no matter how the viewer accommodated, and this would
yield a noticeable and annoying conflict. On the other hand, if the
image was rendered sharply everywhere, the viewer would experi-
ence a sharp retinal image with each new fixation, and that outcome
would probably be more desirable. This notion could be important
in applications like medical imaging, where the viewer may need
to look at features throughout the scene.

Thus, blur rendering in stereo images should probably be done
according to the rule of thumb in Eq. (8) when the designer in-
tends the viewer to look at one simulated distance, but should not
be done that way when the viewer is likely to look at a variety of
distances.

8. CONCLUSIONS AND FUTURE WORK
We showed how manipulating blur in images can make large things
look small and small things look large. The strength of the effect
stands in contrast with previous notions of blur as a weak depth
cue. A probabilistic model shows that absolute or relative distance
cannot be estimated from image blur alone, but that those distances
can be estimated quite effectively in concert with other depth cues.
We used this model to develop a semi-automatic algorithm for ad-
justing blur to produce the desired apparent scale. The results of a
psychophysical experiment confirmed the validity of the model and
usefulness of the algorithm.

We described how blur and stereo operate over similar domains,
providing similar information about depth. A rule of thumb can
be used to assure that blur and disparity specify the same three-
dimensional structure. As stereo images and video become increas-
ingly commonplace, it will be important to learn what artistic vari-
ations from the natural relationship between blur and disparity can
be tolerated.

We also described how the normal relationship between blur and
accommodation is disrupted in pictures. Learning more about the
consequences of this disruption will be valuable to the develop-
ment of advanced displays in which the normal relationship can be
approximated.
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