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Spatiotemporal visual statistics 
of aquatic environments 
in the natural habitats of zebrafish
Lanya T. Cai 1, Venkatesh S. Krishna 2, Tim C. Hladnik 3,4, Nicholas C. Guilbeault 2,5, 
Chinnian Vijayakumar 6, Muthukumarasamy Arunachalam 10,7, Scott A. Juntti 8, 
Aristides B. Arrenberg 3, Tod R. Thiele 2,5,11* & Emily A. Cooper 1,9,11*

Animal sensory systems are tightly adapted to the demands of their environment. In the visual 
domain, research has shown that many species have circuits and systems that exploit statistical 
regularities in natural visual signals. The zebrafish is a popular model animal in visual neuroscience, 
but relatively little quantitative data is available about the visual properties of the aquatic habitats 
where zebrafish reside, as compared to terrestrial environments. Improving our understanding of 
the visual demands of the aquatic habitats of zebrafish can enhance the insights about sensory 
neuroscience yielded by this model system. We analyzed a video dataset of zebrafish habitats 
captured by a stationary camera and compared this dataset to videos of terrestrial scenes in the same 
geographic area. Our analysis of the spatiotemporal structure in these videos suggests that zebrafish 
habitats are characterized by low visual contrast and strong motion when compared to terrestrial 
environments. Similar to terrestrial environments, zebrafish habitats tended to be dominated by 
dark contrasts, particularly in the lower visual field. We discuss how these properties of the visual 
environment can inform the study of zebrafish visual behavior and neural processing and, by 
extension, can inform our understanding of the vertebrate brain.

The images cast on animals’ retinas during natural behavior have strong statistical regularities, which mold the 
structure and function of the visual  system1,2. As such, substantial progress has been made in visual neurosci-
ence by studying the properties of ensembles of images and videos of the natural world  (see3  and4 for reviews). 
However, little is known about the unique visual demands for aquatic species used in neuroscience research.

Zebrafish in particular are a popular model animal in visual neuroscience, due to their diversity of visually-
mediated behaviors already at larval stages, their relatively small brain size for vertebrate species, and their ame-
nability at the larval stage for non-invasive imaging of neural activity throughout the central nervous  system5. 
Advances in understanding visual processing in the zebrafish brain are broadly useful because they can inform 
our understanding of visual processing in vertebrate brains in general. Zebrafish are native to South Asia and 
are typically found in shallow water bodies with little to no  flow6 or in slow flowing, small streams and  rivers7. 
Aquatic environments like these differ from terrestrial habitats in notable ways. For example, particulates in the 
water interact with reflected light and likely reduce overall visual contrast. Snell’s window and the reflective water 
surface present different constraints on the content in the upper visual field as compared to terrestrial spaces. 
In addition, wave-induced light fluctuations occur underwater, and depending on wave dynamics and water 
depth, can create flicker and motion signals that have long been hypothesized to drive visual  adaptations8–11.

Aquatic environments likely have strong statistical regularities that can shed light on our understanding of 
the cells and circuits that underlie visually-guided behaviors in these animals. Indeed, a range of recent work has 
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suggested that properties of zebrafish vision and behavior can be explained by adaptations to specific visual pat-
terns in their natural  habitats12–16. Critical to further understanding zebrafish neural and behavioral adaptations 
to their environment is a determination of the spatiotemporal properties of contrast and motion in their habitat. 
Here we report the statistical analysis of a calibrated video dataset from the natural habitat of wild zebrafish. We 
compare these videos to a dataset of proximate terrestrial environments to identify unique visual demands of 
the aquatic environment that likely shaped how zebrafish encode and respond to visual cues.

Materials and methods
Field recordings. Data were analyzed from a video survey of zebrafish habitats in the Indian state of Assam 
over a two-week period in October 2019. The details of the video recordings, the devices used, and their calibra-
tion can be found in the methods section  of16, which reports on the collection of the full dataset and describes a 
separate analysis of optic flow when the recording devices were moved to simulate swimming. Here, we focus on 
a detailed analysis of videos captured from stationary devices optimized for understanding the spatiotemporal 
visual statistics of the habitats. In brief, omni-directional recording devices (Insta360 One X) were positioned at 
a set of pre-selected sites in the natural range of zebrafish. The devices, which consisted of two fish-eye cameras, 
were housed in a waterproof case during video recording both underwater and in air and positioned using either 
a small tripod or a custom boom rig. Videos were recorded at 100 frames per second using the h.264 codec (MP4 
file format) and frames were extracted as PNG image files (1504 × 1504 pixels for each camera).

Uncompressed video recording would have been preferable for an analysis of spatiotemporal statistics, because 
video compression algorithms tend to create blocking artifacts that produce illusory edges. However, the require-
ments for the field work and the components of the full recording apparatus necessitated the use of compressed 
recordings. By carefully processing the videos and focusing on relative comparisons between aquatic and ter-
restrial environments, we believe our analysis is largely robust to compression-related artifacts. For example, 
blocking artifacts are unlikely to strongly affect the large-scale contrast statistics that are the focus of many of 
our analyses, because these artifacts tend to affect local clusters of pixels and we average over large regions of 
the video frames. To reduce spatial artifacts, we also pre-filtered frames with a Gaussian smoothing kernel (σ = 2 
pixels). Upon visual inspection, we observed a minor remaining temporal compression signature which resulted 
in small and transient reductions in mean luminance after every 100 video frames. As these reductions were very 
small (< 1% of mean luminance) we did not attempt to filter them out further. Our analysis of the spatiotemporal 
power spectra of the videos in the Fourier domain may be most susceptible to compression artifacts. However, 
the fact that we find different results in the spatial and temporal domains suggests that these results are due to 
the underlying scene statistics rather than the recording compression. Thus, we suggest that the compromises 
associated with video compression are reasonable in the context of the current analyses, but should be taken 
into account when interpreting the results.

Videos for this analysis were acquired from 9 sites across central Assam. Data from 3 sites were excluded 
due to positional instability of the camera and insufficient lighting. Table S1 and Fig. S1 provide locations and 
descriptions for the 6 sites included in our analysis (see Supplemental Material). At some sites, terrestrial videos 
were captured by positioning the camera within a natural scene near an aquatic sampling location or directly 
above the water. In total, 36 candidate videos were recorded from the 6 sites. Of these videos, 15 were excluded 
because the camera was transiently moving during recording, and one was excluded due to low light. This left 
20 videos for further analysis (14 aquatic and 6 terrestrial).

Video sampling. We subsampled the video dataset in both space and time. To sample spatially, four visual 
regions were taken from each video. Regions were centered on either -38° or 38° in azimuth relative to the center 
of each of the two fisheye lenses at an elevation of 0°. Each sample was a square region subtending 75 × 75°. 
Videos were typically a few minutes long. For the aquatic videos, we sampled the final 10 s of each recording 
to minimize the impact of the camera placement underwater. For the terrestrial environments, we performed 
the same spatial sampling, but re-sampled the same videos twice at two non-overlapping time points: the first 
(after experimenters were out of camera view) and the final 10 s of each video. This adjustment was made due 
to the comparatively smaller data set for terrestrial habitats. Following the methods described  in16, estimates of 
the intrinsic properties of each camera were made using the Computer Vision Toolbox in Matlab and were used 
to rectify each region via perspective projection onto a plane orthogonal to the visual axis. For this analysis, we 
used only the green channel of the three-channel videos. Pixel intensity values were linearized using calibrated 
light measurements, such that they represent changes in light intensity that are linear with respect to the light 
levels in the environment. All details of the camera spatial intrinsics, spectral responses, and nonlinearities are 
included in a set of calibration files in the publicly available dataset, and are also reported in detail in the meth-
ods of the manuscript that originally introduced this  dataset16.

Some samples were excluded from further analysis upon manual inspection. Pre-analysis exclusion criteria 
include: humans or equipment visible (n = 15), bubbles or debris attached to the dive case (n = 11), and excessive 
pixel saturation (n = 17). With respect to pixel saturation, limitations in camera dynamic range can lead to clip-
ping in either the dark or the bright regions of a scene. To ensure that our measures of scene statistics were not 
biased by these artifacts, for each sample we calculated the percentage of pixels with intensity values falling within 
the bottom and top 2% of the maximum intensity value of the camera. Any sample with 10% or more pixels in 
these clipping ranges was excluded from analysis. Of the remaining samples, the clipped pixels were excluded 
from the contrast analysis (≈ 1% of pixels). Note that the spatial extent of all samples omitted Snell’s window. 
These exclusions left 25 terrestrial and 36 underwater samples for analysis. The first frames of several samples 
are shown in Fig. 1. Below each frame, the average intensity is plotted as a function of time. Videos showing all 
61 samples are included in the Supplemental Material (Videos S1 and S2).
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Video analysis. Global contrast. We first wanted to examine the distribution of global visual contrast in 
the zebrafish habitat. We defined the global contrast (C) at each pixel location (x,y) to be

where I(·) denotes the raw light intensity, x and y denote the coordinates of each pixel, and Ī denotes the average 
intensity across all pixels within a given sample (75 × 75° over 10 s). This normalization accounts for differences 
in overall light levels across the different sites, which are not of primary interest in the current investigation 
because phototransduction processes adapt visual responses relative to the mean light levels (e.g.17). With this 
calculation, the mean contrast of each distribution is zero by definition (although the removal of saturated 
pixels can slightly alter the mean). We computed the variance, skewness, and kurtosis of global contrast across 
all pixels for each sample. We also calculated the probability density over linearly spaced bins ranging from 
contrast levels of −1 to 4.

Entropy. We used these global contrast measurements to calculate the entropy (H) of each sample, which pro-
vides a measure of the information carried by a signal. We calculated entropy from discrete probability distribu-
tions with n = 256 different levels (corresponding to 8 bits in the image), as follows:

where p(·) denotes the discrete probability density function, and Ci is the i-th level of global contrast. Here we 
measure entropy in bits (log base is b = 2). Intuitively, the products of the probabilities of each intensity level 
with the associated log probability collectively indicate the expected value of self-information: the amount of 
information in each level scaled by the probability of that level occurring.

Local contrast. We calculated local contrast at each pixel via locally-normalized difference of Gaussian filters. 
We convolved each video frame with a two-dimensional, zero-sum isotropic difference of Gaussians (g(x,y;σ), 
σcenter = 1°, σsurround = 2°). We normalized each filter response by the local mean luminance, which was defined as 

(1)C(x, y) =
I(x, y)− I

I

(2)H = −

n
∑

i=1

p(Ci) · logb[p(Ci)],

Figure 1.  Examples of the first frame and the average change in intensity over time from the terrestrial and 
aquatic video samples. Each image shows the green (G) channel of one sample’s first frame. The images are 
shown as log light intensity for visibility. Below each image is the average intensity as a function of time for the 
same sample. For all temporal plots, the abscissa is time with a span of 10 s, and the ordinate is intensity on an 
arbitrary scale.
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the response of a unit-sum two-dimensional isotropic Gaussian with standard deviation equal to the surround-
ing portion of the contrast filter. Specifically, the local contrast (CL(x, y)) was defined as

where * is the convolution operator. Edge artifacts were removed before computing summary statistics.

Spatiotemporal power spectrum. To examine how visual contrast was distributed over space and time, we com-
puted the spatiotemporal power spectrum of each sample. We can consider each video sample as a 3D data 
array consisting of two spatial dimensions (225-by-225 pixels) and one temporal dimension (1001 frames). We 
applied a 3D Hanning window to each sample to minimize edge artifacts, subtracted the mean value, and then 
performed a 3D Fast Fourier Transform. We grouped the Fourier signal amplitude into logarithmically-spaced 
spatiotemporal bins. In spatial frequency, the bins ranged from 0.05 cpd up to 0.75 cpd in 19 steps. In temporal 
frequency, the bins range from 0.5 to 50 Hz in 19 steps. These ranges were determined based on the spatial 
resolution of the videos, the camera frame rate, and the dimensionality of the video samples. Spatial bins were 
structured to capture all orientations equally (“rings” in Fourier space). We computed the mean power (square 
of the Fourier amplitude) as a function of spatial and temporal frequency separately by marginalizing the full 
power spectra across either dimension. These marginalized spectra were fit to a linear model. We also computed 
the joint spatiotemporal spectrum by calculating the mean power separately in each spatiotemporal frequency 
bin (361 bins total).

Estimation of the spatial and temporal limits of zebrafish vision. We wanted to examine this spa-
tiotemporal spectrum in the context of the established limits of larval zebrafish vision. We thus compared this 
spectrum to spatial and temporal limits associated with optomotor responses (OMR), optokinetic responses 
(OKR), and prey capture responses. This analysis is visualized in Fig. 5A. For the temporal sensitivities of the 
OMR and OKR, we adopt approximate limits of 14 cycles/second18,19 and 2 cycles/second20, respectively. Note 
that the temporal limit for these behaviors depends on the tested spatial frequencies and velocities. The spatial 
limit (visual acuity) for the OKR has been reported to be 0.16 cycles/degree21, but estimating the spatial limit for 
the OMR was more complex. An OMR tuning curve to spatial frequency has been previously reported (Fig. 2a 
 of22), showing that the OMR was drastically reduced for spatial frequencies of 0.08 cycles/degree or higher pre-
sented on a display. However, an aquatic visual stimulus setup with flat water container surfaces was used in this 
study, which introduces stimulus distortions such that the stimulus appears different to the fish than intended 
by the  experimenter23,24. Based on the estimated distance from fish to water container bottom (0.25 cm, personal 
communication Jiaheng Xie), the distance from water container to stimulus screen (5.65 cm) and the estimated 
thickness of the water container and transparent stage (0.5 cm) in this study, we calculated the spatial frequency 
visible to the fish at the nadir based on the equations in Appendix 1 of Dunn et al.23. A stimulus grating 12° 
in spatial period (extending from the nadir) appears to the fish as a spatial period of 9.3°. We therefore adopt 
10.8 cycles/degree as the visual acuity for OMR behavior. For prey capture behaviors, the spatial and temporal 
stimulus bounds are approximately 0.09 to 0.33 cycles/degree and 2 Hz to 60 Hz,  respectively25. We also include 
a comparison with the the flicker fusion rate (20 Hz)26,27 and the theoretical cone spacing limit (0.24 cycles/
degree) for  larvae21.

Statistical analyses. Pertinent features of the video samples selected for analysis were approximately nor-
mally distributed, so we adopted parametric statistics to examine differences between terrestrial and aquatic 
samples with a significance threshold of p < 0.05. Throughout the results, we use unpaired two-tailed t-tests and 
adopt d-prime as a measure of effect sizes. For the analysis comparing the upper and lower visual fields, we con-
ducted 2 × 2 ANOVAs (terrestrial versus aquatic habitat; upper versus lower field) and conducted follow-up tests 
of pair-wise comparisons using the Tukey–Kramer method. Effect sizes for the ANOVAs are reported as partial 
eta-squared (ηp

2). For all statistics in the main results section, we report sample means, effect sizes, and p values. 
The full results, including test statistic values, degrees of freedom, and standard deviations, are reported in the 
Supplemental Material Tables S2 and S3.

Results
Zebrafish are relatively unlikely to encounter high contrasts in their habitats compared to ter-
restrial environments. A primary source of behaviorally-relevant visual information in the environment 
is contrast: variations in the relative brightness or darkness of points across space and time. For example, a pred-
ator approaching from above may block light and produce a looming region of relative darkness in the upper 
visual field; a potential food source may reflect a specularity that is brighter than the surrounding  area12,28–30. We 
thus begin with an analysis of the overall distribution of contrast (Fig. 2).

Previous studies of terrestrial environments have shown several common features of how contrast is distrib-
uted: it tends to be unimodal with a peak near zero and leptokurtotic (i.e., heavy-tailed)31–38. These features are 
well-predicted by a basic model of the physical interaction between light and surfaces in the natural world in  air39. 
Our terrestrial samples were consistent with this prior work. Figure 2A shows the average contrast distribution 
for the terrestrial samples and the standard deviation (green line and green shading). These distributions tended 
to be unimodal and heavy-tailed. In our sample, the modal contrast was less than zero (i.e., dominated by dark 
contrasts), which is not unusual (see next Section)31,33.

(3)CL(x, y) =
I(x, y) ∗

[

g(x, y; σcenter)− g(x, y; σsurround)
]

I(x, y) ∗ g(x, y; σsurround)
,
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Similar to these terrestrial environments, the aquatic zebrafish habitat samples had an average contrast distri-
bution that was unimodal and relatively leptokurtotic (Fig. 2A, blue line and blue shading). However, the shapes 
of the distributions from the two types of environments were clearly different. We found that the variance was 
lower in the aquatic habitats (Fig. 2B,  MTerrestrial =  MT = 0.75,  MAquatic =  MA = 0.23, d′ = 2.03, p ≪ 0.001), as was the 
kurtosis (Fig. 2C,  MT = 11.00,  MA = 4.50, d′ = 0.83, p = 0.001). Variance and kurtosis are both measures of sym-
metric spread about the mean, so together these results suggest that high contrast points are overall less likely 
in zebrafish habitats. However, in both habitats the kurtosis was significantly greater than a normal distribution 
 (pT ≪ 0.001,  pA = 0.023), denoting the presence of heavy tails (low probability, high contrast features).

For a given measurement (say, contrast level, neuronal spike rate), entropy provides a means of quantifying 
how informative that measurement is on the basis of its probability distribution. For example, a variable whose 
distribution is an impulse function has minimum entropy—measurements are not needed to know what the value 
will be in a given instance, because it is always the same. A uniform distribution has maximum entropy because 
all levels are equally likely. We found that the samples from the zebrafish habitat had significantly lower entropy 
than the terrestrial samples, consistent with the observation that the probability mass is more concentrated 
towards zero contrast and the variance and tails are weaker (Fig. 2D,  MT = 6.60,  MA = 6.02, d′ = 1.46, p ≪ 0.001).

Taken together, these results suggest that high contrast features are relatively unlikely during natural visual 
experience in the zebrafish habitat. Behaviorally relevant information, however, can be conveyed by low probabil-
ity, high contrast events. Importantly, the region of the visual field analyzed here does not include Snell’s window, 
which is much brighter than the rest of the visual field and potentially contains different contrast. Nonetheless, 
within the region of the visual field analyzed here, these results suggest that fewer neural resources in the zebrafish 
brain may be specialized for discriminating between levels of high contrast than would be predicted based on 
conventional terrestrial visual statistics.

Zebrafish habitats are dominated by dark contrasts, similar to terrestrial environ-
ments. Another notable feature of natural contrast distributions from terrestrial environments is their posi-
tive  skew31,37–39. That is, these distributions tend to have a long tail towards bright contrasts. Previous research 
examining visual sensation in terrestrial species has recognized that this positive skew leads to a preponderance 
of dark contrasts—that is, negative contrast coming from points with intensity below the local mean—during 
natural vision. Across a range of terrestrial species and levels of the visual hierarchy, the visual system appears 
to be adapted to exploit this dark dominance. These adaptations range from having smaller and more numer-
ous OFF cells in the  retina37,40,41 to cortical and subcortical receptive fields biased for encoding levels of dark 
 contrast42 to motion processing mechanisms that exploit asymmetric luminance  histograms43,44. Psychophysical 
studies in humans suggest that these neural biases have perceptual consequences, resulting in higher sensitivity 
to detect and discriminate patterns with dark  contrast45–48.

Since the zebrafish visual system shares many of the basic structures for early visual encoding present in ter-
restrial species, it is important to examine whether a dominance of environmental “darks” may similarly play a 
role in shaping their visual systems. In our dataset, the aquatic contrast statistics indeed tended to be positively 
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skewed (Fig. 2E,  MA = 1.00, p ≪ 0.001). This positive skew resulted in substantially more than half of the pixels 
having an intensity below the mean intensity  (MA = 0.60, p ≪ 0.001, Fig. 2F). Recall that we defined global con-
trast in this analysis relative to a large spatial region (75° square). When we calculated local contrast based on a 
smaller contrast operator, this dark bias was still present in the aquatic samples (Fig. 2A inset, Fig. 2G,  MA = 0.55, 
p ≪ 0.001). These observations are in line with recent findings suggesting that the zebrafish visual system contains 
asymmetric processing of bright and dark  contrasts13,14, which may reflect adaptations to a dominance of visual 
information contained in dark contrasts similar to terrestrial species. Consistent with prior observations, the 
nearby terrestrial samples were also dark biased (Fig. 2E–G, skewness:  MT = 2.20, p ≪ 0.001; proportion negative 
global contrast:  MT = 0.68, p ≪ 0.001; proportion negative local contrast:  MT = 0.57, p ≪ 0.001). However, we note 
that the asymmetry was weaker in the aquatic habitats based on all measures (skewness: d′ = 1.23, p ≪ 0.001; 
proportion negative global contrast: d′ = 0.99, p ≪ 0.001; proportion negative local contrast: d′ = 0.79, p = 0.006). 
A weaker dark dominance in aquatic habitats may have quantitative implications for how ON and OFF pathways 
are structured to encode visual contrast in aquatic and terrestrial  animals49. However, systematic differences in 
ON/OFF pathway organization have not yet been examined between animals living in different ecological niches.

The dominance of dark contrasts in the zebrafish habitat is primarily in the lower visual 
field. Several properties of visible light vary systematically as a function of elevation in the visual field, in 
both terrestrial and aquatic  imagery12,16,31,50,51. These variations suggest that natural environments can place dif-
ferent demands on cells and circuits that typically encode the upper and lower visual fields. Upper/lower visual 
field asymmetries are prevalent in the zebrafish retina and in their behavioral  responses12,13,15,16,52. Thus, we next 
examined the shapes of the contrast distributions above and below the midline (elevation = 0). Figure 3A shows 
the median contrast across the visual field for the terrestrial and aquatic samples, as well as the full distributions 
of contrast separated out for the upper and lower hemifields. We focus this analysis on main effects of visual field 
location (upper vs. lower) and interactions with environment (terrestrial vs. aquatic), since the main effects of 
environment were consistent with the results discussed in the previous section.

In both the terrestrial and aquatic samples, the mean contrast in the upper visual field tended to be higher than 
in the lower visual field (Fig. 3B). Because global contrast was normalized by the mean intensity across the whole 
visual field, this difference indicates that the upper visual field tended to be brighter and the lower visual field 
tended to be darker in both environments, which makes sense because in both environments illumination tends 
to come from above. There was a significant main effect of hemifield (upper vs. lower:  Mup = 0.29,  Mlow =  − 0.35, 
ηp

2 = 0.83, p ≪ 0.001) and a significant interaction effect with environment (ηp
2 = 0.21, p ≪ 0.001). The interaction 

indicated that the bright contrast bias in the upper visual field did not differ significantly between aquatic and 
terrestrial samples (p = 0.05), while the dark contrast bias in the lower visual field was stronger in the terrestrial 
samples compared to aquatic (p ≪ 0.001).

As discussed in the previous section, the variance and kurtosis of contrast provide measures of symmet-
ric spread. We found that variance tended to be higher in the upper visual field of both habitats (Fig. 3C). 
Again, there was a significant effect of hemifield (upper vs. lower:  Mup = 0.56,  Mlow = 0.09, ηp

2 = 0.44, p ≪ 0.001) 
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and a significant interaction (ηp
2 = 0.24, p ≪ 0.001). In the upper field, the variance was significantly higher in 

the terrestrial than the aquatic samples (p ≪ 0.001), but there was no significant difference in the lower visual 
field (p = 0.63). Examining higher order symmetric spread (kurtosis, Fig. 3D), we observed a main effect and 
interaction in the opposite direction (upper vs. lower:  Mup = 5.70,  Mlow = 8.30, ηp

2 = 0.05, p = 0.015; interaction: 
ηp

2 = 0.04, p = 0.034). In the upper visual field, the kurtosis was not significantly different between the sample 
types (p = 0.12), but it was significantly higher in the terrestrial habitats in the lower visual field (p ≪ 0.001). Note 
that this finding extends our previously published analysis, which showed that contrast sparsity also varies as 
a function of elevation in these  habitats16. Overall, the upper and lower visual fields were more similar to each 
other in the aquatic samples than in the terrestrial samples, suggesting that spatial variations are present in these 
environments but less robust.

We also found that skewness was more positive in the lower field in both environments (Fig. 3E; upper vs. 
lower:  Mup = 1.10,  Mlow = 1.50, ηp

2 = 0.04, p = 0.02). While this visual field difference was descriptively stronger in 
the terrestrial samples, we did not observe a statistically significant interaction. In terms of the overall proportion 
of negative global contrasts in the upper and lower visual fields (Fig. 3F), there was a significant effect of hemifield 
(upper vs. lower:  Mup = 0.38,  Mlow = 0.87, ηp

2 = 0.78, p ≪ 0.001) and a significant interaction (ηp
2 = 0.04, p = 0.037). 

The proportion of negative contrasts was higher in the lower visual field in both the terrestrial and aquatic sam-
ples (0.89 and 0.86, respectively; no difference between environments, p = 0.81). All other pairwise comparisons 
were statistically significant (p ≤ 0.001). When contrast was calculated based on the local operator, there was no 
longer a main effect of visual field or an interaction (upper vs. lower:  Mup = 0.55,  Mlow = 0.56, ηp

2 = 0.01, p = 0.43; 
interaction: ηp

2 = 0.01, p = 0.37; Fig. 3G). This finding suggests that the extra lower field dark dominance primarily 
results from the low frequency bright to dark gradient created by the illumination from above (Fig. 3A), rather 
than from local differences in reflectance and shadows. Taken together, these results indicate that the upper 
and lower visual fields place consistently different demands on the zebrafish visual system in terms of encoding 
achromatic visual contrast. However, these differences are not as pronounced as in the terrestrial comparison 
samples. It is important to note that the separation into upper and lower visual field in this analysis assumes that 
the horizontal meridians of the animal’s eyes are aligned to the horizon, which is not always the case.

Spectral power in zebrafish habitats is concentrated at lower spatial frequencies and higher 
temporal frequencies. The images cast on the retinas in natural environments exhibit complex spatiotem-
poral dependencies not captured by aggregated global or local contrast measures. These dependencies can be 
exploited by the visual system to further achieve efficient coding objectives. For example, images and video of 
terrestrial scenes are correlated in space and time: points that are nearby both spatially and temporally tend to 
be more similar in intensity and  color35,53–55. These correlations manifest in a specific way in terrestrial imagery, 
which is revealed when natural images and video are analyzed in the frequency domain. Specifically, imagery of 
terrestrial environments peaks in power at low spatial and temporal frequencies and falls off roughly with a 1/fn 
shape, where f denotes frequency and n is approximately 2. These data are often plotted in the log–log domain, 
leading to a linear function with a slope of -n. A range of theories have been proposed for how this pattern arises 
from physical properties of the environment, such as object occlusions and depth  scaling55–57. Our samples from 
terrestrial imagery were consistent with this prior work. The spatial and temporal power spectra of the terrestrial 
samples are plotted as green lines in Fig. 4A and C, respectively. We fit the spatial and temporal power spectra 
with a linear regression and found that the average log–log slope in the spatial domain was -2.40 and the average 
slope in the temporal domain was -1.54 (Fig. 4B and D, green circles).

Substantially less is known about spatiotemporal correlations in underwater habitats. One previous study 
examined the spatial frequency spectrum of a sample of oceanic aquatic images as compared to a terrestrial set 
and found that the best fitting slope was relatively steeper in the aquatic  imagery35. This finding indicates a relative 
lack of high spatial frequencies in the aquatic visual environment. The spatial power spectra we observed in the 
zebrafish habitats were consistent with this prior work (Fig. 4A and B, blue): the slope of the aquatic power spectra 
tended to be steeper than the terrestrial scenes  (MT =  -2.40,  MA =  -2.83, d′ = 1.56, p ≪ 0.001). Interestingly, we 
observed the opposite pattern for the slope of the temporal power spectra (Fig. 4C,D): the average temporal slope 
was shallower in the aquatic samples as compared to the terrestrial samples  (MT =  -1.54,  MA =  -1.32, d′ = 0.58, 
p = 0.027). These data suggest that the zebrafish habitat has higher spatial correlations but lower temporal cor-
relations than the comparison terrestrial habitats.

Previous research has suggested that the spatiotemporal power spectra of terrestrial videos are well-predicted 
by relatively weak assumptions about the distribution of speeds that objects tend to move in the  world55. Figure 4E 
and F show the median joint spatiotemporal spectra from our aquatic and terrestrial samples. Both spectra have 
a concentration of power at the lowest spatiotemporal frequencies, with a roughly monotonic fall off along both 
dimensions. Examining the differences between the spectra (Fig. 4G), we observed an increase in power in the 
zebrafish habitat at relatively low spatial frequencies and relatively high temporal frequencies, as expected from 
the marginal distributions. However, this analysis also suggests a source for this difference: the increase in power 
appears to fall along a regime that corresponds to fast speeds (iso-speed lines are illustrated as contours on the 
plot, and increase from the upper left to the lower right). Thus, the differences in spatiotemporal power might 
primarily arise from more fast motion occurring in the aquatic samples, possibly due to drifting particulates, 
swimming fish, and flowing vegetation.
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Discussion
Implications for studying behavior. A central finding from our analysis is that zebrafish habitats have 
a distribution of visual contrast that is quantitatively different from terrestrial habitats. The distributions are 
similar in shape, but their differences suggest that high contrast visual input is simply less likely in the zebrafish 
habitat. One previous study examined contrast in oceanic aquatic imagery and concluded that contrast values 
tended to be lower as compared to terrestrial  imagery35. The authors posited that this difference arises due to 
greater light absorption and scattering underwater. However, the presence of consistent aquatic and terrestrial 
contrast differences was questioned in a meta-analysis that contained a broader sample of terrestrial  habitats58. 
Ultimately, the specifics of the distribution of visual contrast in an animal’s habitat will be affected by a number 
of environmental properties that are challenging to predict from other data sources, motivating the value of 
directly examining the habitats where model organisms reside.

For much of the history of zebrafish behavioral science, common behavioral assays—such as the optomotor 
and optokinetic responses—have primarily been elicited in the laboratory with simple, high contrast and high 
coherence stimuli such as drifting  gratings59. While such stimuli have led to significant advances in understand-
ing visually-guided behavior, a key question moving forward is whether visually-guided behaviors in zebrafish 
can be better understood based on behavioral adaptations to a sparse contrast environment. Recent studies 
investigating decision making using optomotor swimming have shown that larval zebrafish can perceive sparse 
motion cues generated by low coherence random dot  patterns60,61, showing that the zebrafish visual system is 
able to perceive motion cues even under demanding conditions. Future work could examine how a range of 
visually guided behaviors are driven by visually sparse stimulation with naturalistic spatiotemporal distributions.

Indeed, the results of our study complement a converging set of evidence suggesting that optomotor behaviors 
represent specific adaptations to environmental cues. We found that dark contrasts dominate in zebrafish habitats, 
particularly in the lower visual field. Dark contrasts were recently shown to play a key role in driving the optomo-
tor response in  zebrafish13. Combined with recent data showing that optomotor behavior in zebrafish is primarily 
elicited by motion in the lower visual  field15, and that the lower field bias is well-predicted by the statistics of 
optic flow experienced during self-motion in the zebrafish  habitat16, these data suggest that this behavior may 
be well-adapted to exploit both contrast and optical flow patterns in lower visual field in the natural habitat. In 
particular, we hypothesize bright to dark transitions in the lower visual field may provide the most prevalent, 
reliable information for detecting and counteracting undesirable self-motion (e.g., passive drift in water cur-
rents). Importantly, optomotor responses are present across terrestrial and aquatic species. By learning about 
natural visual statistics for the zebrafish, our analysis provides evidence to support the general hypothesis that 
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Figure 4.  Spatiotemporal power spectra indicate more fast speeds in the aquatic samples. (A) Spatial power 
spectra. Lines indicate the mean log power across samples and shaded regions indicate plus or minus one 
standard deviation. Green and blue colors indicate terrestrial and aquatic samples, respectively. Cpd denotes 
cycles/degree. (B) Histograms of the best fit slopes of spatial power spectra in (A). The markers and errorbars 
show the means and the 95% confidence intervals. (C) Temporal power spectra, plotted in the same manner as 
(A). Cps denotes cycles/second. (D) Histograms of the best fit slope of temporal power spectra in (C). (E) The 
median terrestrial spatiotemporal power spectrum. (F) The median aquatic spatiotemporal power spectrum. (G) 
The difference between logarithmic values in (E) and (F). Lines illustrate iso-speed contours derived from the 
ratio of temporal frequency and spatial frequency.
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optomotor responses are adapted for self-stabilization, and also supports the hypothesis that species-specific 
differences may arise due to differences in natural contrast and motion statistics across the visual field in different 
 environments16. The present study’s measurements of the spatiotemporal visual demands imposed solely by the 
habitat provide a counterpart to our previous analysis of localized optic flow produced by the interplay of self-
motion and the  environment16. Defining the visual structure of the environment when zebrafish are relatively 
still is particularly important for the larval stage where swimming is highly discontinuous.

Looking beyond a specific behavior, we wanted to know how the limits of behavioral sensitivity broadly relate 
to the environmental power spectrum. To examine these relationships, in Fig. 5A we overlay key behavioral and 
retino-physiological limits for the larval zebrafish visual system over the spatiotemporal structure of the aquatic 
environment. Plotted behavioral parameters include the spatial (visual acuity) and temporal limits of the opto-
kinetic response (OKR)20,21 and optomotor response (OMR)18,19,22 in larval fish, in addition to the spatial and 
temporal stimulus bounds for larval prey  capture25. For reference, we also plot the flicker fusion rate (FFR)26,27 
and the theoretical cone spacing limit for  larvae21 as red lines. The spatial and temporal limits for these visually-
driven behaviors appear to fall well within the spatiotemporal frequency regions with high power. The larval prey 
capture range is an exception to this observation: this higher-level behavior is likely adaptive for visual events 
that convey information of high behavioral importance (e.g., the presence of food), irrespective of their overall 
statistical likelihood across all visual imagery. While statistical descriptions of natural habitats are essential for 
understanding the demands placed on an animal’s sensory systems, an important next step in this line of research 
is to develop more quantitative models of optimal strategies for driving successful visually-guided behaviors 
within this  habitat15,62. Our current results suggest that different visually-driven zebrafish behaviors, such as 

0.5 2  10 44
Temporal freq. (cps)

0.06

0.13

0.30

0.70

Sp
at

ia
l f

re
q.

 (c
pd

)

A
FFR

Cone spacing

Prey capture range

OKR

OMR

+

-1
Contrast

C
um

ul
at

iv
e 

de
ns

ity

0 1 2 3
0

10

20

30
C

ou
nt

5 6 87
Neural entropy

B40

Terrestrial
Aquatic

B C

Figure 5.  Implications for understanding visually guided behavior and neural coding. (A) The colormap shows 
the spatiotemporal power spectrum of the aquatic samples, reproduced from Fig. 4F using the same color scale. 
The horizontal dotted and dashed lines represent the spatial limit (visual acuity) of the optokinetic response 
(OKR) in larvae (0.16 cpd)21 and the optomotor response (OMR) in larvae (0.11 cpd, see our estimation based 
 on22 in the methods section), respectively. The vertical dotted and dashed lines represent the approximate 
temporal limit of the OKR (~ 2 cps depending on stimulus  velocity20) and the OMR (~ 14  cps18,19), respectively. 
Note that the temporal limit depends on the tested spatial frequencies and velocities. The solid black lines 
indicate the spatial and temporal stimulus bounds for larval prey capture (spatial: 0.09 to 0.33 cpd; temporal: 
2 cps to 60 cps) and the cross indicates the "ideal" prey  stimulus25. The red lines indicate the flicker fusion rate 
(FFR; 20 Hz)26,27 and the theoretical cone spacing limit (0.24 cpd) for  larvae21. (B) Cumulative probability 
distributions for visual contrast are shown to illustrate different optimal neural response nonlinearities as 
described  in32. (C) We applied each of the nonlinearities from (B) to the aquatic imagery in our dataset and 
computed the entropy of the predicted neural responses.
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OMR and prey capture, exploit information in spatiotemporal regimes that vary substantially in their overall 
power, which can help inform our understanding of what types of situations these behaviors are adaptive for.

Implications for neural coding. Behavioral adaptations to the natural habitat rely on neural adaptations 
that likely increase the efficiency of coding across cells, circuits, and systems. For example, in a seminal study, 
Laughlin suggested that the optimal contrast response nonlinearity for individual neurons has the shape of the 
cumulative probability distribution of contrast in the animals’ visual  environment32. Such a nonlinearity lets all 
response levels be used equally and can thus maximize the neurons’ response entropy and information capacity. 
A pertinent previous study investigated potential changes in the response nonlinearities of bipolar retinal cells 
in salamanders that transition from a juvenile aquatic phase and an adult land  phase58. The authors did not find 
evidence for any change in the bipolar cell responses accompanying the change in habitat, however, the relevant 
environmental contrast distributions were not directly measured, and the nonlinearities during both phases 
were well-matched to an overall theoretical optimum.

According to our dataset and the framework set out  in32, if zebrafish visual neurons have adapted to the rela-
tively narrow coding demand for contrast of their aquatic environment, we would expect the contrast response 
functions of visual neurons to exhibit a similarly narrow band of coding capacity (Fig. 5B, blue line) as compared 
to encoders of terrestrial contrast (Fig. 5B, green line). To quantify the differences between these response non-
linearities, we applied the two average nonlinearities shown in Fig. 5B to all our aquatic environment samples 
and computed the resulting entropy of the neural response distributions. As expected, applying the aquatic 
nonlinearity resulted in significantly higher neural entropy than applying the terrestrial nonlinearity to the same 
samples (Fig. 5C,  MT = 7.1 ± 0.49,  MA = 7.7 ± 0.28; t(70) = 6.13, d′ = 1.44, p ≪ 0.001). A caveat is that this approach 
assumes noise is additive and uniformly distributed, which is not necessarily the case in neural  systems63, and 
the contrast transformation could be embodied by a range of different levels of visual processing. For example, 
nonlinearities may accumulate across the visual hierarchy, or may be distributed within a given population via 
heterogeneous neuronal  types63–65.

Asymmetries between bright and dark contrasts in natural environments have also been extensively linked 
to adaptations in neural cells and circuits. In particular, anatomical and functional differences between the 
ON and OFF visual pathways in terrestrial animals are hypothesized to reflect adaptations to exploit the dark 
dominance of natural terrestrial  imagery37,38,43,44. The current data suggest that neural adaptations exploiting a 
preponderance of dark contrasts in visual inputs should be advantageous for neural coding of visual information 
in the zebrafish habitat as  well14. However, similar to chromatic vision, our data suggest that such adaptations 
may vary systematically across the visual  field12,52. Interestingly, a recent report suggests that retinal positions of 
ON retinal ganglion cells are biased to the upper visual field, while the OFF retinal ganglion cells are biased to 
the lower visual  field52. This reported asymmetry in retinal encoding maps onto our observed spatial contrast 
distribution, suggesting that the reported retinal ganglion cell distribution is well-adapted to encode the natural 
contrast statistics reported here. These anatomical findings also suggest a potential neural mechanism for the 
behavioral visual field biases discussed in the previous section with respect to optomotor behaviors. It would 
be informative to explore whether neural coding of higher-order motion (e.g.,66) differs between neurons in the 
zebrafish visual system with receptive fields in the upper and lower visual field.

Lastly, from an efficient coding perspective, it has been proposed that an important function of populations 
of neurons in early stages of the visual system is to reduce, or whiten, spatiotemporal correlations to remove 
unneeded redundancy in the visual signals. For example, whitening can be accomplished via center surround 
receptive fields and inhibitory interactions. There is good empirical evidence to support these predictions across 
diverse terrestrial  species59,67–69. The relatively low temporal correlations in the zebrafish habitat suggest that 
less temporal whitening is needed to efficiently encode the aquatic habitat, assuming similar noise properties. 
Experiments in the manner  of69, combining viewing of natural videos with functional recording, could be used 
to examine whether and how different stages of the zebrafish visual system alter the temporal spectrum of 
incoming natural visual input. Regardless of the environmental source, the greater statistical independence of 
temporal input to the zebrafish visual system provides an interesting opportunity to examine the role of temporal 
whitening in a model organism that evolved in a habitat with temporal structure that diverges from terrestrial 
animal models.

Limitations
Capturing a complete sampling of any animal’s natural habitat is a daunting task. Even within the same species, 
habitats can be diverse and can differ across developmental stages. For the current dataset, we made efforts to 
sample a diverse set of environments, however, more systematic sampling schemes could be used in the future to 
ensure good coverage of the visual diversity experienced by zebrafish. We did not use a high dynamic range cam-
era, which limits our ability to examine highlights and lowlights in the environments, and we used a device with 
video compression which may bias spatiotemporal statistics. Importantly, any artifacts would likely be relatively 
similar across the terrestrial and aquatic samples. We found evidence of more motion in the aquatic samples, but 
one possibility is that this motion was—in part—caused by small camera motion in flowing water. All samples 
from both environments are included in the Supplemental Material, and an examination of these videos sug-
gests that the terrestrial videos do have very little environmental motion as compared to the aquatic samples.

Conclusion
We hope that these habitat measurements will serve to expand our knowledge on how ecological niches have 
shaped the function of visual circuits and the behaviors these circuits subserve. Our database of field recordings 
is also freely available for further analysis. Integration of our analyses with the extensive neurophysiological and 
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behavioral tools in zebrafish provides an exciting opportunity for attaining a unique neuroethological perspec-
tive on vertebrate vision.

Data availability
The video dataset can be accessed at https:// doi. org/ 10. 5281/ zenodo. 75024 51, and Matlab code for performing 
the reported analyses is available at https:// github. com/ eacoo per/ Zebra fishA quati cVisu alSta tsCode.
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