Sensory and cognitive plasticity: implications for academic interventions

Emily A. Cooper1 and Allyson P. Mackey2

1Department of Psychological & Brain Sciences, Dartmouth College, 6207 Moore Hall, Hanover, NH 03755, United States
2Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St. 46-4037D, Cambridge, MA 02139, United States

Research in neuroscience has great potential for transforming education. However, the brain systems that support academic and cognitive skills are poorly understood in comparison to the systems that support sensory processing. Decades of basic research have examined the role that brain plasticity plays in the genesis and treatment of developmental visual disorders, which may help to inform how cognitive training approaches can be tailored for students who experience environmental disadvantage. In this review, we draw parallels between visual and cognitive intervention approaches, and suggest research avenues that could inform educational practice in the future.

Correspondence: amackey@mit.edu

This review comes from a themed issue on Neuroscience of Education. Edited by Dénes Szücs, Fumiko Hoeft and John Gabrieli

Introduction

Fluid cognitive skills, such as reasoning, working memory, and processing speed, are highly correlated with performance in school [1,2]. Many attempts have been made to improve cognitive skills in children with varying degrees of success [3,4], and with only limited evidence of transfer to academic performance [5,6]. Failures in cognitive training studies are so common that some have argued that cognitive skills are fixed [7]. However, the concept of fixed cognition is difficult to reconcile with the overwhelming evidence that brain systems are highly plastic [8]. More likely, we simply have not yet discovered the optimal way to promote cognitive plasticity.

The basic science of cognitive plasticity is in its infancy, as is the translational science of developing cognitive interventions. In contrast, the visual system offers a well-studied paradigm of neuroplasticity, both in terms of basic mechanisms, and in terms of real-world applications. In this review, we discuss important findings from visual neuroscience and their relationship to the development of treatments for individuals with visual deficits. Then, we draw analogies to the neuroscience of cognitive plasticity, and to efforts to improve fluid cognitive skills and academic achievement in children from disadvantaged backgrounds. Finally, we discuss future directions for research on visual and cognitive plasticity, and how these fields can be mutually informative.

Visual neuroscience and clinical treatment: a test-case for neuroscience-informed intervention

It is well known that the visual system requires experience for the development of normal visual function [9]. If the brain is deprived of the normal patterns of visual experience during development, enduring deficits can result. In the extreme, some visual functions are subject to “critical periods” – fixed and finite durations of heightened brain plasticity, often occurring early in life. Studies in animals suggest that the mediation and eventual closure of critical periods in visual cortex rely on a diverse set of mechanisms including: myelination [10], the maturation of inhibitory neurons [11], and the formation of perineuronal nets that stabilize cellular structures [12,13]. Many such studies use monocular deprivation paradigms, in which one eye is physically occluded or otherwise weakened with respect to the other. Because primary visual cortex is organized in ocular dominance columns, these studies allow for the close examination of how deprivation affects cortex devoted to input from each eye.

In humans, a relatively prevalent example of deprivation during a critical period is amblyopia, a condition that can occur in young children if one eye has a much larger refractive error than the other (is more out of focus) or is misaligned with the other (“lazy eye”). Amblyopia is estimated to affect approximately 3% of the population [14], and encompasses a constellation of visual deficits that range from poor visual acuity (or clarity) in the weaker eye, to lack of stereovision, to higher-level issues related to visual processing. The similarities between amblyopic visual experience and animal models of monocular deprivation suggest that their effects on the visual system may be mediated by similar neural mechanisms [15]. Related to this idea, recent interest in how therapies for amblyopia may exploit different aspects of neural plasticity has led to rapid advances in our understanding of the time course and potential outcomes of both conventional and new amblyopia treatment types.
The treatment of amblyopia almost always begins with correcting the weaker eye, either with optics or surgery. That is, the first step is to remove the original cause. In some cases, this may be sufficient to restore normal vision within a few months [16]. If visual deficits persist even after the ocular cause is removed, this confirms the presence of a neural deficit. For centuries, the mainstay of amblyopia therapies has been patching: the stronger eye is covered with a patch, and the child must perform daily tasks using the weaker eye on its own. It is thought that patching exploits plasticity in the early visual pathways to strengthen the processing of signals coming from the weaker eye. However, children’s responsiveness to this treatment is highly age-dependent: earlier intervention is more effective. Cross-sectional studies report that children under the age of seven respond best to patching, confirming standard clinical practice [16,17]. Older children can respond to treatment, but the efficacy is substantially worse and thus the condition is less likely to fully resolve.

At the same time, animal work has also established that different visual functions have different critical periods, suggesting a developmental progression of plasticity within the visual system [18,19]. In recent years, there has been growing interest in new therapies that improve ambyopic visual function beyond the conventional critical period, highlighting the idea that different treatments can be tailored for different ages. Two recent studies show that visual function can continue to improve if targeted “dichoptic” treatment is adopted after any improvements gained with patching have plateaued [20,21]. The dichoptic method involves encouraging the two eyes to work together, rather than forcing the use of one eye on its own. Other “perceptual learning” therapies involve intensive training of the weaker eye on specific visual tasks [22].

The precise mechanism of improvements in juvenile and adult amblyopia with these new therapies remains controversial [23], particularly because a variety of different approaches have produced similar results [24]. However, it is appealing to propose that the improvements with non-patching treatments reflect the hierarchical nature of visual plasticity. While patching may be effective at times when early visual pathways are most malleable, the maturation of higher-level modulatory circuits may be necessary to induce different types of plasticity later in life [25,26]. There is much left to learn, but it is clear that the plasticity of the visual system changes drastically from infancy to adulthood, and that understanding these changes has tangible consequences for the timing, type, and efficacy of interventions.

**Improving cognitive skills: lessons from visual neuroscience**

The treatment of amblyopia serves as an example of a productive bidirectional relationship between neuroplasticity research and intervention development that can be considered analogous to the development of interventions to improve fluid cognitive skills. We will limit the scope of discussion to the skills typically assessed by fluid intelligence tests: fluid reasoning, working memory, and processing speed [27]. We will focus on the case of children whose cognitive skills are impacted by environmental disadvantage, such as low socioeconomic status [28,29], as these children represent a large proportion of students who struggle in school.

1. The first step is to remove the original cause. In the case of amblyopia, the cause is relatively easy to both diagnose and treat. On some level, the same can be said of environmental disadvantage, even if the broader picture is more complicated: the cause is the lack of economic resources and the treatment is supplementing these resources. In adults, increased income, in the form of unconditional cash transfers [30] or increased wealth from a successful harvest [31], is associated with improved cognition. One possible mechanism for these effects is that the stress associated with poverty detracts from cognitive function. Indeed, just prompting individuals in poverty to think about their finances reduces cognitive performance [31]. Less is known about the impact of income on children. One study found that an increase in income amongst families in poverty is associated with emotional and behavioral benefits for children [32]. However, because it is often not practical to supplement family income directly, a more tractable goal may be to support parental socioeconomic mobility [33,34]. Alternatively, it may be effective to build caregiver capacities for buffering the stresses associated with economic disadvantage [35]: parenting interventions with this goal have had some of the most impressive and long-lasting effects on child cognitive skills [36,37]. Curriculum that empower teachers to alleviate stress in the classroom may be similarly effective [38].

As with treating amblyopia, sometimes removing the original cause, in this case environmental disadvantage, may be sufficient to treat, or even prevent, cognitive disparities, depending on the age at which this type of intervention occurs. But in cognitive interventions, removing the cause is not always an option. Schools often cannot modify home environments and therefore must take alternate approaches to boosting cognition.

2. Earlier intervention is more effective. Patching treatment for amblyopia is more effective in younger children, perhaps because the early maturation of visual circuits leads to a critical period for ocular dominance that starts at a young age and closes around age seven. What do we know about the timing of the neural mechanisms that underlie critical, or more generally, “sensitive” periods for cognitive systems? Sensitive periods of cognitive development have been relatively well-studied in the case of language acquisition, with evidence supporting multiple periods of plasticity that include early and restricted, as well as later and more flexible, intervals [39]. It is still unknown whether there are analogous critical or sensitive periods for fluid cognitive skills and their neural substrates, such as association cortex.

Structural and functional properties of association cortex in
3. Different treatments can be tailored for different ages. Like visual abilities, cognitive skills have also been hypothesized to be hierarchical. According to the Developmental Cascade Model [56], processing speed supports working
memory, which in turn supports fluid reasoning. These skills develop at different ages, and longitudinally, gains in a lower-level skill predict future gains in a higher-level skill [57]. Cognitive interventions might be most effective if matched to a child’s cognitive skill profile. For example, a younger child, or a child with low processing speed, might benefit more from processing speed training than from reasoning training because deficits in the lower-level skill create a bottleneck for the higher-level skill. Future research is necessary to determine whether there are indeed multiple hierarchical sensitive periods in cognitive development, and whether educational interventions are more effective if tailored to age or developmental stage.

Conclusion

For decades, clinical observations have inspired research in visual neuroscience, and in turn, basic research on neuroplasticity has informed our understanding of visual disorders. We suggest that this bidirectional relationship can serve as a model for the future of cognitive plasticity research. Three specific research avenues stand out to us as analogous across fields: understanding and treating the root cause, defining the optimal timing of interventions, and tailoring interventions to age and developmental stage.

Important differences between fields could potentially limit the usefulness of these analogies. At a cellular level, plasticity in ocular dominance columns is easier to measure than plasticity in association cortex, because the structure of association cortex is not as well understood. However, recent work suggests that there may be maps in association cortex that are analogous to those in sensory cortex, which may make cognitive plasticity research more tractable in the future [58,59]. Behaviorally, animal models of monocular deprivation closely parallel human experiences with amblyopia, but it is unclear whether animal models of cognitive enrichment and social isolation adequately mirror the diversity of human cognitive experiences. Clinically, treatment efficacy is easily defined and measured in vision, e.g., acuity gain per 100 hours of patching [17], but optimal outcomes are more difficult to define in cognitive plasticity research. Most interventions show effects on some cognitive and academic measures but not others and the relative importance of these measures is unclear.

Looking forward, direct comparisons of sensory and cognitive plasticity both in terms of mechanisms and phenomenology will help maximize our ability to translate progress across brain systems. For example, modeling methods used to identify the time course of sensitivity to deprivation in the human visual system via perceptual measurements (e.g., [60]) could be applied to cognitive measurements, allowing for common tracking of plasticity across brain systems. However, clearly defined periods of environmental disadvantage are likely much less common than periods of altered vision. Thus, rather than focusing on susceptibility to deprivation, the same principles could be applied by reasoning that sen-
ACKNOWLEDGEMENTS

We would like to thank Bas Rokers, Kirstie Whitaker, and Julia Leonard for their feedback on drafts of the manuscript. This publication was supported by the Eunice Kennedy Shriver National Institute Of Child Health & Human Development of the National Institutes of Health under Award Number F32HD079143 to APM. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Bibliography


This study examines the treatment efficacy (visual acuity gain per 100 hours of patching) for children within and beyond the traditional critical period for amblyopia treatment. This is a useful way to behaviorally quantify plasticity across ages, and confirms that the effectiveness of patching treatment decreases steeply with age.


Mani and colleagues collected data from shoppers at an American mall and farmers in India to provide converging evidence of the cognitive burden of poverty. Along with the work by Haushofer and Fehr [29], this study demonstrated that cognitive disparities associated with income are not set in stone, rather they fluctuate dynamically as income changes.


This study calls into question the assumption that association cortex retains plasticity longer than sensory cortex. They examined gene expression in mouse visual cortex and prefrontal cortex at three different ages: before, during, and after the visual critical period. Surprisingly, the two areas did not differ substantially in the temporal expression of genes related to activity-dependent plasticity.


This study used high-field functional magnetic resonance imaging (7 tesla) to demonstrate a topographic map of numerosity in human parietal cortex. Understanding the spatial structure of association cortex is an important step forward for cognitive plasticity research because it provides a more tractable target for measuring the effects of experiential manipulations.


63. **Duffy KR, Mitchell DE: Darkness alters maturation of visual cortex and promotes fast recovery from monocular deprivation.**


This study uses a monocular deprivation paradigm in animals to show that complete light deprivation can restore plasticity in visual cortex after the development of amblyopic vision. The results suggest that immersion in darkness may cause molecular changes that revert visual cortex back to a younger state.


